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Resumo 

A massiva quantidade de dados produzida nos dias de hoje, por conta do advento da 

internet e dos sistemas computacionais de alto processamento, já não é mais capaz de ser 

manipulada manualmente pelos humanos. Por isso, o campo de estudo de aprendizado de 

máquina vem ganhando cada vez mais espaço e relevância no contexto da interação humano-

máquina. Através de métodos e modelos matemáticos surgem diferentes algoritmos que visam 

obter informações estratégicas a partir desses dados. 

Este trabalho propõe comparar e selecionar um dos modelos de análise e classificação 

de opiniões em comentários textuais qualitativos das Surveys multistakeholder da 1ª edição da 

pesquisa Empresas Humanizadas do Brasil. Para isto, utiliza-se de uma base proprietária de 

dados (para treinamento e teste) e dos algoritmos de aprendizado de máquina Naive Bayes, com 

uso da técnica N-gramas, e redes neurais recorrentes LSTM e LSTM bidirecional. 

 

Palavras-chave: Aprendizado de Máquina. Naive Bayes. Redes Neurais Recorrentes. 
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CAPÍTULO 1: INTRODUÇÃO 

1.1. Contextualização e Motivação 

É fato notável que a cada dia produz-se uma quantidade maior de dados, carregados 

de informações, cuja a capacidade humana, limitada, já não é mais capaz de tratar. Por isso 

que, no mundo moderno, com auxílio da internet e dos sistemas computacionais, gerenciar 

dados de clientes, produtos e serviços, extraindo a maior quantidade possível de vantagem 

dessas informações, é uma estratégia chave para qualquer negócio. Assim, da otimização de 

produtos e serviços até o próprio relacionamento negócio-cliente, torna-se tarefa crucial 

conseguir extrair opiniões e/ou emoções a partir dessas fontes de dados.  

Para Alves et al. (2014), a análise de comentários expressos nessas fontes de dados 

requer muito esforço quando tratada de forma manual, principalmente devido ao grande 

volume de dados gerados. Por isso, surgiram novas tecnologias que tornam possível obter 

novos conhecimentos a partir dessa grande massa de informações. Dentre elas, aprendizado 

de máquina (ML, do inglês, Machine Learning) é um dos campos do conhecimento que mais 

crescem, no intuito de trazer luz a solução desses problemas, por meio da intersecção da 

ciência da computação, da matemática aplicada e da estatística. O progresso recente na área 

de ML foi impulsionado pelo desenvolvimento de novos algoritmos e teoria de aprendizado 

e pela explosão contínua na disponibilidade de dados on-line e computação de baixo custo 

(M. I. JORDAN; T. M. MITCHELL, 2015). Sendo que, uma tendência mais recente é a 

análise de sentimentos ou mineração de opiniões, que busca identificar a opinião por trás de 

um texto, possibilitando obter feedbacks emocionais sobre produtos, serviços, organizações, 

figuras públicas e outros fontes de informação. Análise de sentimentos também é comumente 

conhecida por vários outras termos, tais como: extração de opinião, mineração de 

sentimento, análise de subjetividade, análise afetiva, análise de emoções e mineração de 

opinião (LIU, 2012). 

Ainda segundo Liu (2012), uma opinião é formada por dois elementos principais: um 

alvo e um sentimento expresso em relação ao alvo. O alvo pode ser definido como uma 

entidade, ou seja, representa uma pessoa, marca de um determinado produto, ou qualquer 
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sujeito que esteja relacionado à opinião. Já o sentimento é a opinião ou emoção expressa em 

relação ao alvo. Por exemplo: “eu amo a empresa onde eu trabalho”. Nesta frase, a parte “a 

empresa onde eu trabalho” representa o alvo, e a palavra “amo” representa o sentimento 

expresso em relação a empresa. 

Entretanto, em massivas quantidades de dados, inúmeros desafios surgem na análise 

destes sentimentos ou opiniões, uma vez que podem existir desde erros provenientes dos 

próprios textos (como os ortográficos ou sintáticos) até erros provenientes dos próprios 

dados (como a estrutura de dados ou dados que não fazem parte do contexto da aplicação). 

Além disso, esses desafios se acentuam quando as análises textuais são na língua portuguesa, 

pois segundo Inoki (1992), a variação dos tempos e formas verbais, regras de concordância 

e flexões verbais, são desafios comumente encontrados no idioma português. 

A análise de opiniões utiliza diversas técnicas e campos da computação moderna de 

maneira integrada, desde estatística, passando por mineração de dados, até o processamento 

de linguagem natural (NLP, do inglês Natural Language Processing). Abordagens essas que, 

se baseiam no ML supervisionado, no qual algoritmos são utilizados para induzir modelos 

preditivos por meio da observação de um conjunto de objetos rotulados (VON LUXBURG 

E SCHÖLKOPF, 2008). 

Neste contexto, análises de opiniões podem ser utilizadas em pesquisas do tipo 

Survey que, segundo Figueiredo (2004), destina-se tanto a obtenção de informações quanto 

à prevalência, distribuição e inter-relação de variáveis no âmbito de uma população e, nos 

dias de hoje, coletam massivas informações textuais, qualitativas, para análises, por conta 

da conectividade que facilita a pulverização, em uma população, desse tipo de pesquisa. 

Inspirado nisso, este trabalho explora o uso da análise de opiniões aplicada a 

pesquisa, do tipo Survey, destinada aos multistakeholders (diferentes atores de uma 

organização, como diretores, colaboradores, investidores, sociedade e afins) de diferentes 

empresas, participantes da 1ª edição da Pesquisa Empresas Humanizadas do Brasil, na qual 

o autor deste trabalho teve a oportunidade de atuar, em 2018, sob a liderança do pesquisador 

e doutorando pelo curso de Engenharia de Produção, Pedro Paro (Escola de Engenharia de 

São Carlos - USP), com o objetivo de ajudar a elevar a humanidade por meio da inspiração 
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de negócios mais conscientes, humanizados, sustentáveis e inovadores. Durante esse 

período, o autor desenvolveu uma ferramenta de organização e pré-processamento dos dados 

qualitativos textuais, das Surveys, para serem lidos pelos membros da pesquisa e 

classificados em: comentários positivos e negativos. Dessa forma, enxergou-se a 

oportunidade de aproveitar a ferramenta desenvolvida e o conhecimento adquirido no curso 

de graduação para desenvolver este trabalho. 

Este projeto tem como principais contribuições: (i) automatizar o processo de análise 

das opiniões e diminuir o tempo gasto da equipe para classificação dos comentários 

qualitativos textuais; (ii) construir a estrutura de base para o desenvolvimento futuro de uma 

inteligência artificial, agregando valor a pesquisa no contexto de inovação; e (iii) comparar 

dois algoritmos de ML, muito diferentes, para análise de opiniões em Surveys 

multistakeholders. 

 

1.2. Objetivos 

Este trabalho tem como objetivo desenvolver um modelo de análise e classificação 

de opiniões, a partir de comentários qualitativos textuais das Surveys multistakeholders da 

1ª edição da Pesquisa Empresas Humanizadas, como também fazer um comparativo entre 

diferentes algoritmos de ML para tal finalidade. O estado da arte para análise e classificação 

de opiniões emprega diversas ferramentas e métodos que se baseiam em diferentes 

estratégias, tais como ML, NLP, mineração de dados, método de Naive Bayes, redes neurais 

ou mesmo a combinação de tais técnicas.  

O modelo proposto neste trabalho será baseado em algoritmos de ML 

supervisionado, para análise e classificação de opiniões, a partir de um conjunto de 

treinamento proprietário. Para tal, irá se fazer o uso e comparação das técnicas de Naive 

Bayes com N-gramas e das redes neurais LSTM (do inglês, Long Short Term Memory), 

visando escolher a arquitetura que retorna os melhores resultados para o conjunto de dados 

utilizados nesta proposta.  
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1.3. Organização do Trabalho 

No Capítulo 2 são apresentadas as técnicas, métodos e modelos utilizados no 

desenvolvimento deste projeto, bem como a revisão da terminologia básica utilizada. A 

seguir, no Capítulo 3, descrito o projeto desenvolvido, todos os seus procedimentos, 

implementações e resultados obtidos. Finalmente, no Capítulo 4, são apontadas as principais 

contribuições de projeto, os trabalhos futuros que podem utilizá-lo ou melhorá-lo, assim 

como sua relação com o curso de graduação. 
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CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA 

2.1. Considerações Iniciais 

Neste capítulo são apresentados os principais conceitos, terminologias abordadas na 

literatura, além das abordagens e técnicas no que diz respeito a análise e classificação de 

opiniões textuais com o uso de ML. É apresentada a fundamentação teórica pertinente no 

que diz respeito aos modelos necessários para o desenvolvimento da aplicação de pré-

processamento de dados e NLP. Além disso, discorre-se também sobre as arquiteturas e 

algoritmos de ML pertinentes à aplicação prática deste trabalho. 

 

2.2. Pré-processamento de dados 

Considerando o grande volume de dados disponível em diversas aplicações, com 

frequência os conjuntos de dados não possuirão uma qualidade boa o suficiente para a 

extração de conhecimento novo, útil e relevante por algoritmos de ML. As principais causas 

de baixa qualidade de dados incluem a ocorrência de atributos irrelevantes, valores ausentes 

ou redundantes (PADILHA, V. A; CARVALHO, A. C. P. L. F, 2017).  

Sendo assim, o primeiro passo na elaboração de um modelo de análise e classificação 

de opiniões é fazer o tratamento da base de dados, ou seja, remover inconsistências, como 

registros que não estão no formato correto, que não estão classificados ou que não possuam 

comentários. Além disso, tratar os dados significa também colocá-los em um formato no 

qual seja mais fácil obter informações. 

Uma das técnicas muito utilizadas no pré-processamento de textos (que inclui a 

análise e classificação de opiniões) é a remoção das chamadas “palavras de parada” (do 

inglês, stopwords), que são palavras removidas antes ou após a aplicação de técnicas de 

NLP, por serem consideradas irrelevantes no contexto trabalhado. Geralmente é um conjunto 

de preposições, artigos, alguns advérbios e alguns verbos, como demonstra a Figura 1. 
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Figura 1 - Exemplo ilustrativo de stopwords. Elaborado pelo autor. 

 

Outra técnica muito comum é o stemming, que consiste em reduzir as palavras 

flexionadas, ou conjugadas, em uma língua para a sua raiz, ou seu radical. O radical de uma 

palavra é a menor parte da mesma que contém seu significado léxico, sem os afixos ou 

flexionais, ou seja, é um morfema básico (que mostra o sentido básico da palavra), vide 

Figura 2. 

 

Figura 2 - Exemplo ilustrativo de raiz ou radical de uma palavra. Adaptado Motta A. (2010). 

 

Assim, através das técnicas de pré-processamento obtêm-se um vocabulário menor 

de palavras no modelo, elimina-se as redundâncias ocasionadas por palavras muito similares 

e tem-se um ganho de tempo computacional. 
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2.3. Processamento de Linguagem Natural (NLP) 

O NLP, se refere ao conjunto de técnicas computacionais que, combinadas com 

informações linguísticas, permitem que computadores representem e utilizem 

conhecimentos expressados em frases de linguagem natural (BARROSO, Y. M, 2016). Ou 

seja, o objetivo da NLP é ajudar os computadores no entendimento, interpretação e 

manipulação da informação de texto (como classificação e identificação de idioma) e áudios. 

Essa técnica pode ser fragmentada em tarefas mais simples como Tokenização e 

identificação de classes gramaticais, ou em mais complexas como Semantic Role Labeling e 

Hedge Detection (CRESTANA, C. E. M, 2010). A seguir são introduzidos dois dos métodos 

de NLP, o N-Gramas e o Term Frequency - Inverse Document Frequency (TF-IDF). 

 

2.3.1. N-Gramas 

 A abordagem para construção do dicionário de palavras a partir de um ou mais itens 

lexicais agrupados é conhecida como N-gramas. Esta abordagem consiste em uma 

subsequência de “n” elementos em uma sequência maior, os quais são definidos de acordo 

com a quantidade de elementos que os compõem. Geralmente se trabalha com 3 tipos de N-

gramas:  

• Unigrama (Figura 3), que é basicamente cada uma das palavras que compõem uma 

sentença ou frase, muito utilizado em trabalhos de classificação em tópicos e em 

análises de sentimentos. Muito confundido com os tokens em artigos ou publicações 

onlines. 

• Bigrama (Figura 4), que é uma concatenação de cada 2 palavras que compõe o texto, 

sendo a ordem um fator muito importante. São utilizados em análises de sentimentos 

para capturar combinações negativas de palavras. 

• Trigrama (Figura 5), é uma composição de 3 palavras, pouco utilizado nas atividades 

de classificação em tópicos ou análises de sentimentos por conta da sua baixa 

performance em relação aos outros tipos supracitados. 
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Figura 3 - Exemplo ilustrativo do tipo N-grama: unigrama. O sinal de pontuação não é considerado não tem 

nenhum valor semântico para a aplicação. Elaborado pelo autor. 

 

 

Figura 4 - Exemplo ilustrativo do tipo N-grama: bigrama. O sinal de pontuação não é considerado não tem 

nenhum valor semântico para a aplicação. Elaborado pelo autor. 

 

 

Figura 5 - Exemplo ilustrativo do tipo N-grama: trigrama. O sinal de pontuação não é considerado não tem 

nenhum valor semântico para a aplicação. Elaborado pelo autor. 

+ 
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2.3.2. Term Frequency - Inverse Document Frequency (TF-IDF) 

Ao considerarmos uma sentença ou um documento, é possível observar a ordem das 

letras e das palavras, bem como o número de vezes em que cada palavra se repete no texto. 

Uma abordagem muito comum para extração de features de documentos e sentenças é 

realizar a contagem de termos (Figura 6), ou seja, contar a quantidade de aparições de um 

mesmo n-grama, pois as palavras mais comuns podem ditar o contexto de um documento. 

Entretanto, a contagem de termos dá muita relevância para frases ou documentos que tem 

mais palavras, ficando com um peso desbalanceado para muitos casos. 

 

Figura 6 - Exemplo ilustrativo da contagem de termos para extração de features de documentos. Elaborado 

pelo autor. 

 

Uma proposta para mitigar o problema citado é utilizar o Term Frequency (TF) ou a 

frequência dos termos (Figura 7), ou seja, medir a probabilidade de uma determinada palavra 

aparecer dentro de uma sentença ou documento. O TF é a medida da frequência do termo 𝑡𝑗 

no documento 𝑑𝑖. A ideia básica, segundo Aranha (2007), é de que os termos que mais 

aparecem possuem maior relevância/peso do que aqueles que aparecem com menos 

frequência no documento. Assim sendo, atribui-se a 𝑎𝑖𝑗 o valor 𝑇𝐹(𝑡𝑗, 𝑑𝑖), como na Equação 

(1). 

 𝑎𝑖𝑗 = 𝑇𝐹(𝑡𝑗 , 𝑑𝑖) (1) 
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Figura 7 - Exemplo ilustrativo do Term Frequency (TF) para extração de features de documentos. 

Elaborado pelo autor. 

 

Apesar de TF ser uma métrica muito boa, ela possui a limitação no que se refere aos 

termos que aparecem muitas vezes e que não possuem a informação ou o significado daquele 

documento (como as stopwords) uma vez em que estes possuirão uma frequência relativa 

muito alta. 

Nesse sentido, segundo Aranha (2007), Inverse Document Frequency (IDF) é uma 

medida que varia inversamente ao número de documentos que contém a palavra 𝑡𝑗, c, em um 

conjunto de documentos 𝑁. Logo, essa medida, representada na Equação (2) pode ser 

utilizada para dar um peso menor ao problema.  

 𝐼𝐷𝐹 = 𝑙𝑜𝑔
𝑁

𝑐
 (2) 

Dessa forma, surge uma métrica mais robusta que é o TF-IDF (Figura 8), oriundo de 

modelos de análise discriminante estatística baseada em conceitos Bayesianos, que, em 

linhas gerais, procura achar as palavras que mais discriminam o conjunto do documento 

analisado. Durante o processo de aplicação do índice no documento, são atribuídos pesos as 

palavras, baseado em suas frequências, sendo que, o inverso da frequência em documentos, 

que dá peso as palavras raras, como pode ser visto na Equação (3). 
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 𝑎𝑖𝑗 = 𝑇𝐹𝐼𝐷𝐹(𝑡𝑗, 𝑑𝑖) = 𝑇𝐹(𝑡𝑗 , 𝑑𝑖) × 𝑙𝑜𝑔
𝑁

𝑐
 (3) 

   

 

Figura 8 - Exemplo ilustrativo do TF-IDF para extração de features de documentos. Elaborado pelo autor. 

 

2.4. Aprendizado de máquina supervisionado 

Em ML supervisionado, algoritmos são utilizados para induzir modelos preditivos 

por meio da observação de um conjunto de objetos rotulados (VON LUXBURG E 

SCHÖLKOPF, 2008), normalmente chamado de conjunto de treinamento. Os rótulos 

contidos em tal conjunto correspondem a classes ou valores obtidos por alguma função 

desconhecida. Desse modo, um algoritmo de classificação buscará produzir um classificador 

capaz de generalizar as informações contidas no conjunto de treinamento, com a finalidade 

de classificar, posteriormente, objetos cujo rótulo seja desconhecido (PADILHA, V. A; 

CARVALHO, A. C. P. L. F, 2017). 

 

2.5. Técnicas de análise e classificação de opiniões 

A análise e classificação de opiniões, ou análise de sentimentos, é o uso de algoritmos 

de ML e processamento natural de linguagem para extrair insights ou informações valiosas, 
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automaticamente, das opiniões de pessoas em relação a determinado produto, serviço, 

organização ou pessoa pública. Sendo que essa análise, classificação e extração de 

significado pode revelar informações de altíssimo valor estratégico para modelos de 

negócios e/ou organizações.  

Essa análise e classificação em comentários textuais qualitativos pode ser feita de 

várias formas e utilizar uma série de algoritmos diferentes para o mesmo fim, dentre os quais 

vale destacar as árvores de decisão, modelos probabilísticos (Naïve Bayes, Redes 

Bayesianas, Máxima Entropia), lineares (Redes Neurais, e SVM), e modelos baseados em 

regras (WILSON, WIEBE E HOFFMANN, 2009). 

 

2.5.1. Algoritmo Naive Bayes 

 Naive Bayes é um método de classificação muito simples, mas poderoso (PADILHA, 

V. A; CARVALHO, A. C. P. L. F, 2017). Consiste de um classificador probabilístico com 

base no teorema de Bayes com forte suposição independência entre as características, ou 

seja, assume que a presença de uma determinada feature - características que descrevem um 

objeto e, também, entradas dos algoritmos de ML - não tem relação com outras, por isso 

Naive. Esse método utiliza dados de treino para formar um modelo probabilístico baseado 

na evidência das features nos dados. 

 O algoritmo de Naive Bayes, utiliza a Equação 4 que consiste em encontrar uma 

probabilidade a posteriori (ou condicionada) de A condicional a B, pela probabilidade a 

posteriori de B condicional a A e pelas probabilidades a priori de A e B. 

 𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 (4) 

 Naive Bayes é recomendado como uma das melhores alternativas para problemas de 

análises de sentimentos e classificação de textos, quando a correlação entre os fatores não é 

extremamente importante. Além disso, o método tem uma grande aplicação em previsões de 
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tempo real, por possuir uma velocidade relativamente alta e precisar de poucos dados para 

realizar classificações. 

 

2.5.2. Redes Neurais Recorrentes (RNR) 

 As redes neurais recorrentes são redes neurais capazes de processar dados em 

sequência e têm como propriedade a habilidade de usar informação contextual ao mapear 

sequências de entrada e saída. Por isso, é amplamente adotada em modelagem de linguagens 

e em tarefas que envolvem o NLP. 

 Esse tipo de rede opera em loops que fornecem à rede um feedback 

(retroalimentação) constante a respeito do estado das entradas processadas anteriormente, o 

que permite com que a RNR persista em memória os estados dessas entradas, influenciando 

o que é obtido na saída. 

 Logo, a decisão de uma rede recorrente alcançada na etapa de tempo t-1 afeta a 

decisão que alcançará um momento mais tarde na etapa de tempo t. Assim, as redes 

recorrentes têm duas fontes de entrada, o presente e o passado recente, que se combinam 

para determinar como respondem a novos dados, da mesma forma que os humanos fazem 

na vida. 

 Em uma RNR a informação da camada oculta é adicionada no período anterior, como 

pode ser visto na equação 5. Além disso, os parâmetros que fazem a transição da informação 

entre as camadas ocultas de diferentes períodos são sempre os mesmos. Isso mostra que 

redes neurais recorrentes compartilham parâmetros através do tempo. 

 ℎ𝑡= 𝜙(𝑏ℎ +  𝑥𝑈𝑥 + ℎ𝑡−1𝑊𝑋) (5) 

   

Como ilustrado na Figura 9, as camadas ocultas h carregam ao longo do tempo as 

features x combinadas a matriz de peso U. As matrizes de peso U, V, W são usadas 

repetidamente pela rede, sendo que todas as camadas ocultas h compartilham o mesmo peso 
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W. A influência dos parâmetros computados inicialmente em uma RNR sofre decaimento 

expressivo ao longo dos ciclos da rede. Isto é conhecido como vanishing gradient problem. 

 

Figura 9 - Representação de uma rede neural recorrente. Adaptado de Luís Fred. 

 

 Todos os estados ocultos que ocorrem nos tempos t+1 são sensíveis as novas entradas 

x, ou seja, as entradas inicialmente computadas perdem a influência ao longo dos ciclos da 

RNR, acarretando no vanishing gradient. Em outras palavras, as camadas ocultas h são 

sensíveis às entradas subsequentes, fazendo com que a rede “esqueça” dos parâmetros que 

aprendeu com as entradas iniciais, como ilustra a Figura 10 na qual a camada h perde a 

influência da entrada 1 (marcada na cor preta) ao longo do ciclo da RNR, e no ciclo 7 já não 

influencia mais a entrada x.  
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Figura 10 - Vanish Gradient Problem. Adaptado de Luís Fred. 

 

2.5.3. Arquitetura Long Short-Term Memory (LSTM) 

 A arquitetura LSTM foi inicialmente proposta por Hochreiter; Schmidhuber (1997) 

com o intuito de resolver o problema de persistência da informação de longo prazo nas RNR, 

o vanishing gradient. Para isso, a arquitetura utiliza um mecanismo específico em suas 

camadas ocultas, denominado células de memória, que calculam os pesos que os conectam 

de forma a evitar o problema supracitado. Dessa forma, a LSTM tem a capacidade de lembrar 

das informações que armazenou mesmo depois de várias iterações recorrentes, mas também 

de esquecer o estado anterior quando a informação não é mais necessária.  

 Uma célula LSTM é composta por três portões que controlam diferentes 

comportamentos: portão de entrada (input gate), portão de esquecimento (forget gate) e 

portão de saída (output gate). Todos os portões têm uma sigmoid (σ) como função de 

linearidade para controlar o fluxo de informações dentro da célula (BISPO T. D, 2018). 

 Cada célula de uma LSTM (representada na Figura 11) combina os valores do estado 

anterior, da memória atual e da entrada, executando uma série de operações que define se a 
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informação computada anteriormente irá seguir inalterada ao longo da rede, ou que parcela 

dessa informação será eliminada, dando lugar a novas informações dentro da célula. 

 

Figura 11 - Estrutura de uma célula LSTM. Retirado do blog de Christopher Olah. 

 

A chave para uma LSTM é o estado da célula, ou a linha horizontal que percorre a 

parte superior da Figura 12. Esse estado é como uma correia transportadora, que percorre 

toda a cadeia, com apenas algumas interações lineares menores, tornando mais fácil a fluidez 

de informações inalteradas. 

 

Figura 12 - Estado da célula de uma LSTM. Retirado do blog de Christopher Olah. 

 

O forget gate (Figura 13) controla a entrada da célula LSTM (𝐶𝑡)  através da camada 

sigmoide (σ), que possui a propriedade específica de retornar valores entre 0 e 1. Assim, 

quanto mais próximo de 1 for o valor da sigmoide, mais informações serão mantidas da 

célula anterior (𝐶𝑡−1) e passadas para frente. 𝑊𝑓 e 𝑏𝑓, são, respectivamente, o peso e o valor 

bias para o portão de entrada. 
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Figura 13 - Forget Gate de uma célula LSTM. Retirado do blog de Christopher Olah. 

 

A célula LSTM, em seguida, decide quais informações novas serão armazenadas no 

estado da célula de memória. Primeiramente, o input gate (Figura 14) através da função σ 

decide quais valores do estado atual da célula serão atualizados. Em seguida, a função 𝑡𝑎𝑛ℎ 

calcula um novo valor (𝐶̃𝑡) para ser multiplicado ponto a ponto com o vetor resultante do 

passo anterior. 

 

Figura 14 - Input Gate de uma célula LSTM. Retirado do blog de Christopher Olah. 

 

O vetor que contêm os valores a serem adicionados ao estado da célula é combinado 

com a saída do input gate, em seguida somado ao produto entre forget gate e a matriz de 

estados ocultos atual da célula, como pode ser visto na Figura 15. 
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Figura 15 - Gate de uma célula LSTM. Retirado do blog de Christopher Olah. 

 

Por fim, para decidir o que irá para a saída da célula (ℎ𝑡) dois passos são necessários: 

primeiro a sigmoide (σ) decide quais partes do estado da célula 𝐶𝑡 irão para a saída 𝑜𝑡. Então, 

o estado da célula é passado como parâmetro para uma função tangente hiperbólica (𝑡𝑎𝑛ℎ) 

e então combinada com a saída o valor do σ, como pode ser visto na Figura 16. A função 

𝑡𝑎𝑛ℎ força os valores a ficarem entre -1 e 1, fornecendo uma faixa de valores mais ampla 

para ser armazenada. 

 

Figura 16 - Output Gate de uma célula LSTM. Retirado do blog de Christopher Olah. 

 

2.5.4. Long Short-Term Memory (LSTM) bidirecional 

LSTM bidirecional (Figura 17) é uma extensão do LSTM tradicional que pode 

melhorar o desempenho e a acurácia do modelo em atividades de classificações. Ela pode 

ser treinada usando todas as informações de entrada, do passado e do futuro, disponíveis de 

um tempo específico (SCHUSTER; PALIWAL, 1997). Nos problemas onde todos os steps 

de entrada estão disponíveis, o LSTM bidirecional treina dois ao invés de um LSTM na 
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sequência de entrada. O primeiro como está e o outro como uma cópia invertida da sequência 

de entrada. Ao utilizar informações do passado e do futuro como entrada é possível 

minimizar a função objetivo sem a necessidade de atrasos para a inserção de novas 

informações (SCHUSTER; PALIWAL, 1997). Isso fornece um contexto adicional à rede 

que resulta em um aprendizado mais rápido e mais completo do problema.  

 

Figura 17 - Estrutura de um LSTM Bidirecional. Retirado do site i2tutorials. 

 

2.6. Word Embeddings 

No contexto de NLP, convertemos dados textuais em representações vetoriais 

contendo valores numéricos que refletem várias propriedades linguísticas, tais como 

relacionamentos semânticos e contextuais. Estes, representam um grande desafio quanto a 

manutenção da coerência das representações de forma a preservar relações potencialmente 

importantes para as diversas tarefas. 

Os word embeddings, são representações vetoriais (a princípio de palavras) capazes 

de manter a relação entre duas palavras semanticamente relacionadas sem perder a 

habilidade de codificá-las de maneiras distintas (GOODFELLOW; BENGIO; 

COURVILLE, 2016). Dessa forma, essas representações são amplamente utilizadas para 

sanar os desafios supracitados. No espaço vetorial do word embeddings, palavras que 
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aparecem frequentemente em contextos muito parecidos estão mais próximas umas das 

outras, constituindo uma vizinhança de palavras semelhantes semanticamente. Contudo, 

ressalta-se que essas representações vetoriais ainda sofrem com o desafio de representar 

palavras que têm múltiplos significados ou sentidos (LANDEGHEM, 2016). 

 

2.6.1. Modelos de word embeddings 

Muitos algoritmos foram desenvolvidos para gerar modelos de word embeddings e 

disponibilizá-los para a comunidade. Tais modelos podem ser divididos em duas famílias de 

métodos (HARTMANN et al., 2017): Os primeiros são aqueles métodos que trabalham com 

a matriz de co-ocorrência de palavras, como GloVe (PENNINGTON; SOCHER; 

MANNING, 2014). E os segundos, são aqueles que trabalham com modelos preditivos 

(baseado na vizinha das palavras), como o Word2Vec (MIKOLOV et al., 2013). Os 

principais modelos de geração de word embeddings são resumidos por Hartmann et al. 

(2017): 

• The Global Vectors (GloVe): algoritmo de aprendizado não supervisionado 

que computa os vetores através da análise da matriz M de co-ocorrência de 

palavras construída através das informações contextuais das palavras do 

corpus. 

• Word2vec: possui duas diferentes estratégias de treinamento: (i) Continuous 

Bag-ofWords (CBOW), no qual o modelo tenta prever a palavra do meio 

suprimida dentro de uma sequência de palavras, e (ii) Skip-Gram, o modelo 

que serve para predizer a vizinhança de uma da palavra. 

• Wang2Vec: modificação do Word2vec cujo objetivo é considerar a ordem 

das sequências, ao contrário da arquitetura original. 

• FastText: nesta arquitetura, word embeddings são associados N-gramas de 

caracteres, sendo as palavras codificadas como a combinação dessas 

representações. Portanto, esse método tenta capturar informações 

morfológicas para construir os seus word embeddings. 
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Vetores de palavras, gerados através de todos os modelos citados acima, são 

disponibilizados publicamente, para download, pelo Repositório de Word Embeddings do 

Núcleo Interinstitucional de Linguística Computacional (NILC), inclusive em diferentes 

dimensões. Esses vetores foram gerados por meio de um corpus em português do Brasil e 

português Europeu.  

O modelo GloVe executa significativamente melhor do que as outras linhas de base, 

geralmente com menor tamanhos de vetor e corpora (PENNINGTON J. SOCHER R.; 

MANNING C. D, 2014). Levando-se em conta essa citação e a necessidade deste trabalho 

de gerar word embeddings usando corpora em português, adotar-se-á os vetores do NILC 

construídos através do modelo GloVe de 50 e 600 dimensões (GloVe50 e GloVe600, 

respectivamente). O primeiro foi escolhido por ser o menor vetor de palavras do modelo e, 

para a prática deste trabalho, não se escolheu o maior modelo (Glove 1000) por conta do 

espaço disponível em disco do dispositivo computacional onde a aplicação foi desenvolvida, 

selecionando-se, então, o segundo maior modelo: GloVe600. 

 

2.7. Métricas 

Uma das coisas mais importantes ao avaliar diferentes algoritmos de ML, é a escolha 

das métricas que irão avaliar os diferentes modelos, uma vez que existem métricas mais 

indicadas para cada tipo de problema. 

 

2.7.1. Logarithmic Loss 

O Logarithmic Loss (ou loss), é uma métrica de desempenho cuja finalidade é avaliar 

as predições de probabilidades de uma determinada entrada pertencer a uma determinada 

classe. Essa métrica possui valores de 0 a 1, que pode ser vista como a porcentagem de 

confiabilidade de uma classificação. E como se trata de uma medida de loss, quanto menor, 

melhor. Sendo 0, um valor de erro perfeito (BROWNLEE, 2016). 
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 O Logarithmic Loss utiliza a Equação 5 quando o número de classificadores é igual 

a 2, como no caso deste trabalho. Na equação, y é o indicador binário (0 ou 1) para quando 

uma classe é a classificação correta para uma observação, e p é probabilidade prevista do 

modelo de que uma observação seja da classe. 

 𝑙𝑜𝑠𝑠 =  −(𝑦𝑙𝑜𝑔(𝑝) +  (1 − 𝑦)𝑙𝑜𝑔(1 −  𝑝)) (5) 

   

2.7.2. Acurácia 

A acurácia (ou taxa de acerto) é porcentagem de predições feitas corretamente em 

relação a todas as predições feitas. A acurácia é a métrica mais utilizada na avaliação de 

algoritmos para problemas de classificação (BROWNLEE, 2016). Na equação 6 pode-se 

observar como ela é calculada. 

 𝑎𝑐𝑢𝑟á𝑐𝑖𝑎 =  
𝑁º 𝑑𝑒 𝑎𝑐𝑒𝑟𝑡𝑜𝑠

𝑁º 𝑑𝑒 𝑑𝑎𝑑𝑜𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑑𝑜𝑠
 (6) 

 

2.7.3. Matriz de confusão 

A Matriz de Confusão é uma representação muito útil para a acurácia de um modelo 

com duas classes. Basicamente, é uma tabela que possui uma linha e uma coluna para cada 

classe. Cada célula possui o número - ou porcentagem - de predições da classe da linha atual 

que pertencem à classe da coluna atual (BROWNLEE, 2016). 

A partir da Matriz de Confusão, é possível retirar algumas informações sobre cada 

classe, que são utilizadas para calcular diversas métricas (HAN et. al., 2011), que são: 

• Verdadeiro Positivo (TP): dados que foram corretamente classificados pelo 

classificador. 

• Verdadeiro Negativo (TN): dados corretamente classificados como não 

pertencentes à uma determinada classe. 
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• Falso Positivo (FP): dados não pertencentes a uma classe, classificados como 

pertencentes. 

• Falso Negativo (FN): dados pertencentes a uma classe, classificados como 

não pertencentes. 

 

2.4. Considerações Finais 

Neste capítulo discorreu-se sobre alguns conceitos e terminologias empregados no 

campo de estudo do ML e do processamento natural de linguagens. Além disso, abordou-se 

as técnicas de pré-processamento de dados e os algoritmos e modelos matemáticos 

necessários para a análise e classificação de opiniões em comentários textuais. Ainda, foi 

possível discorrer sobre os diferentes modelos de word embeddings e sua aplicação no 

contexto do processamento natural de linguagem. No capítulo seguinte descrever-se-á em 

detalhes o desenvolvimento deste trabalho.  
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CAPÍTULO 3: DESENVOLVIMENTO DO 

TRABALHO 

3.1. Considerações Iniciais 

Neste capítulo são apresentadas todas as etapas de desenvolvimento do projeto, desde 

os detalhes de implementação dos métodos utilizados até a discussão dos resultados obtidos 

em cada etapa do desenvolvimento do trabalho. Além disso, também serão comparados os 

modelos gerados a partir dos métodos implementados. Ao final, serão discutidas as 

principais dificuldades e limitações do trabalho desenvolvido. 

 

3.2. Projeto 

O objetivo deste trabalho é utilizar o conceito prático de ML supervisionado para a 

construção de modelos de análise e classificação de opiniões, em comentários textuais 

qualitativos das Surveys multistakeholders da pesquisa Empresas Humanizadas do Brasil. 

Para isto, utiliza-se de uma base proprietária de dados (algumas das próprias surveys, para 

treinamento e teste) e dos algoritmos de ML Naive Bayes, com uso das técnicas N-gramas, 

e redes neurais recorrentes LSTM uni e bidirecional. Estes algoritmos foram escolhidos por 

representarem diferentes contextos de aplicação: i) o algoritmo Naive Bayes é um dos mais 

simples, muito rápido, retorna um resultado razoável para classificações e é recomendado 

para aplicações em tempo real; ii) as redes neurais recorrentes LSTM uni e bidirecionais são 

algoritmos mais trabalhados, com um tempo de execução maior de acordo com a 

configuração utilizada, portanto não sendo recomendadas para aplicações em tempo real, 

mas que retornam um resultado muito assertivo. Dessa forma, espera-se, neste trabalho, que 

os modelos gerados a partir de redes neurais recorrentes LSTM tenham os melhores 

resultados, por conta dos conceitos já discutidos anteriormente. 

Considerando a já existência de uma base de dados proprietária, o primeiro passo é a 

escolha da linguagem de programação apropriada para o processo de desenvolvimento desta 
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aplicação. Para isto, a linguagem de programação Python foi escolhida, pois possibilitava 

uma implementação enxuta e limpa dos métodos necessários e já discutidos anteriormente. 

A linguagem é de fácil aprendizado, escalável, se integra com diversos tipos de sistemas 

operacionais, possui uma grande comunidade para apoio nas dificuldades e dúvidas e, 

principalmente, contém uma grande variedade de bibliotecas em crescimento (quase que 

exponencial) para aplicações de diversos tipos, como ML e NLP. 

Considerando a existência de uma base proprietária de dados, o passo seguinte é fazer 

o balanceamento dos dados rotulados, buscando não enviesar os algoritmos de classificação. 

Logo, no conjunto de treino e teste da base de dados equilibra-se a quantidade de comentários 

textuais rotulados como positivos ou negativos, em 50% para cada (no caso de uma base de 

dados que contém apenas 2 rótulos). 

 Em seguida, faz-se o pré-processamento destes dados a partir de técnicas como 

stopwords, stemming ou tokenização, já discutidas anteriormente. Além disso, caso 

necessário, pode-se elaborar algumas funções de limpeza, adequadas ao contexto desses 

dados.  Segue a extração dos rótulos, a partir da função de uma das bibliotecas do Python, 

que serão os classificadores dos nossos dados. 

Nos passos que seguem, geram-se as features, que irão compor o vocabulário da 

aplicação, a partir dos métodos de processamento de linguagem de natural, mencionados 

anteriormente. 

Após toda fase de processamento dos dados aplicam-se os algoritmos de análise e 

classificação de opiniões com diferentes configurações (mantendo-se um backup da base de 

dados já processada para ser utilizada em cada nova configuração, não importando a ordem 

de aplicação): 

• Aplicação do algoritmo Naive Bayes  

o com features unigramas e bigramas 

• Aplicação do algoritmo redes neurais recorrentes LSTM  

o sem word embeddings pré-treinadas; 

o com word embeddings pré-treinadas GloVe50; 

o com word embeddings pré-treinadas GloVe600; 
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• Aplicação do algoritmo redes neurais recorrentes LSTM bidirecional  

o sem word embeddings pré-treinadas; 

o com word embeddings pré-treinadas GloVe50; 

o com word embeddings pré-treinadas GloVe600; 

O objetivo de utilizar diferentes algoritmos e configurações é escolher aquela que 

entrega o modelo com maior acuraria no processo de treinamento e teste de classificação dos 

comentários. O fluxo da aplicação prática deste trabalho pode ser visto na Figura 18. 

 

Figura 18 - Fluxo do desenvolvimento deste trabalho. Elaborado pelo autor. 

 Para fins de uso, esse projeto foi realizado em uma máquina com a seguinte 

configuração: 

• Sistema operacional: Windows 10 Pro 64 bits (10.0, Compilação 18362). 

• Processador: Intel® Core™ i7-6700HQ, 2.6 GHz (8 CPUs). 

• Memória RAM: 8192 MB. 

• GPU: NVIDIA GeForce GTX 960M, 6071MB. 

• 120 GB de disco SSD. 

 

3.3. Descrição das Atividades Realizadas 

Esta seção tem por objetivo descrever em detalhes as etapas da metodologia descrita 

na seção anterior. 
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3.3.1. Escolha da linguagem de programação 

A linguagem Python foi, essencialmente, escolhida para o desenvolvimento deste 

trabalho por conta da grande variedade de bibliotecas, já existentes, para atividades de pré-

processamento de dados, processamento de linguagem de natural e implementação de 

algoritmos de ML. Além disso, a linguagem conta com uma enorme comunidade para a 

solução de dúvidas e um vasto arsenal de materiais disponíveis na Internet para consulta e 

uso. Outras características, não menos relevantes, para a escolha da linguagem são: i) 

linguagem de fácil entendimento (mesmo para os que nunca tiveram contato); ii) integração 

com diversos sistemas operacionais (este trabalho foi desenvolvido em sistema Windows 

10); iii) linguagem de alto nível, onde códigos complexos, densos e de difícil compreensão 

são dispensados, reduzindo tempo de compilação (Peters, T, 2004). 

 

3.3.2. Balanceamento da base de dados  

Este trabalho foi desenvolvido em cima de uma base, de comentários textuais 

qualitativos, proprietária, ou seja, o seu autor já dispunha dos dados com as classificações 

pertinentes ao desenvolvimento do projeto. Essa base era um arquivo em formato .xlsx 

(Excel) extraído das Surveys multistakeholders respondidas por um grupo de empresas 

participantes da 1ª edição da pesquisa Empresa Humanizadas do Brasil. O arquivo possuía 

6102 comentários, dentre os quais foram escolhidos (a partir da simples aplicação de um 

filtro no próprio programa Excel), apenas, os que possuíam rótulos ou classificações 

(positivo ou negativo). Dessa forma, chegou-se à base de dados, de fato, utilizada neste 

projeto, um arquivo .xlsx com 622 comentários já rotulados. 

Porém, para o desenvolvimento da aplicação os dados precisavam estar balanceados, 

para não enviesar os algoritmos de análise e classificação. Logo, dos 622 comentários 

rotulados, 489 eram positivos e, apenas, 133 negativos. Portanto, foi realizado um corte 

consciente - garantindo que continuassem a existir comentários de todas as empresas do 

grupo analisado - de comentários classificados positivamente. Por fim, a base de dados foi 

reduzida a, apenas, 266 comentários rotulados e balanceados entre positivos e negativos.  
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3.3.3. Pré-processamento dos dados 

Tendo em mãos uma base de dados rotulada e balanceada era necessário fazer o pré-

processamento desses dados para os próximos passos do desenvolvimento da aplicação. Para 

isso, primeiramente utilizou-se a biblioteca pandas da linguagem Python que são estruturas 

de dados poderosas para análise de dados. Através da função pandas.read_excel()  foi 

possível ler o arquivo no formato .xlsx (Excel) e transferir os dados para serem trabalhados 

dentro da aplicação. Ademais nesta aplicação foram utilizados mais recursos disponíveis na 

biblioteca como: i) apply, permite a manipulação dos dados, como deixar todas as letras em 

minúsculo, limpar strings; ii) get.dummies, transforma os caracteres dos classificadores, 

positivo e negativo, em 0 e 1. 

Em seguida, para tratar os comentários, efetuando a limpeza de caracteres especiais, 

pontuações e coisas inúteis, utilizou-se a biblioteca re que permite manipular expressões 

regulares e pode ser visto no Apêndice A. 

Por fim, utilizou-se a biblioteca NLTK que tem como objetivo dispor ferramentas 

para o NLP. Através de suas funções foi possível eliminar as stopwords e realizar o stemming 

nos códigos desenvolvidos. 

 

3.3.4.  Extração de features dos dados 

Nesta aplicação de NLP, as features do modelo foram basicamente as palavras 

(também chamadas de tokens). Para o teste do algoritmo Naive Bayes, foram utilizados 

unigramas e bigramas que compõem os comentários textuais, através do método discutido 

na seção anterior, TF-IDF. Para o teste dos algoritmos LSTM e LSTM bidirecional, foram 

utilizados apenas os tokens por se tratar de um algoritmo com uma maior complexidade.  
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3.3.5. Aplicação dos algoritmos de análise e classificação de 

opiniões 

No passo que segue a extração de features a partir das instâncias dos dados da base, 

deve-se realizar a aplicação dos algoritmos selecionados com a finalidade de comparação e 

seleção do modelo com os melhores resultados.  

Os algoritmos foram implementados usando a biblioteca sklearn, que consiste de um 

módulo para ML e mineração de dados da linguagem Python. Além disso, os algoritmos 

LSTM e LSTM bidirecional utilizaram a interface de programação de aplicações (API, do 

inglês, Application Programming Interface) de alto nível para redes neurais, a Keras. 

 

3.3.5.1. Algoritmo Naive Bayes  

A implementação do algoritmo se deu, como mencionado, através da biblioteca 

sklearn, mais especificamente através da classe MultinomialNB(), um classificador Naive 

Bayes multinominal, adequado para classificar recursos discretos como contagem de 

palavras para classificação de textos. Porém, a função se adequa muito bem a contagens 

fracionárias quando utiliza métricas como TF-IDF, que foi o caso deste trabalho. Além disso, 

o algoritmo foi testado em duas configurações, uma utilizando unigramas e outra utilizando 

bigramas.  

Segundo Buduma (2015), havia um consenso de se distribuir os dados de treinamento 

e teste na proporção de 80% e 20%, respectivamente, que fora utilizada neste trabalho. E, 

como discutido anteriormente, o algoritmo foi utilizado em duas configurações, uma usando 

unigramas e outra usando bigramas, os resultados da matriz de confusão podem ser 

observados na Tabela 1 e 2, respectivamente. Os valores da acurácia e do tempo de 

treinamento do modelo dos algoritmos podem ser vistos na tabela 3. 
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 Positivo Negativo 

Positivo 51 3 

Negativo 4 50 

Tabela 1 - Matriz de confusão do algoritmo Naive Bayes utilizando unigramas. Elaborado pelo autor. 

 

 Positivo Negativo 

Positivo 50 4 

Negativo 3 51 

Tabela 2 - Matriz de confusão do algoritmo Naive Bayes utilizando bigramas. Elaborado pelo autor. 

 

 Acurácia Tempo de treinamento 

Naive Bayes com unigramas 94% 3s 

Naive Bayes com bigramas 94% 5s 

Tabela 3 - Acurácia e tempo de treinamento dos algoritmos. Elaborado pelo autor. 

 

3.3.5.2. Algoritmo redes neurais recorrentes LSTM e LSTM bidirecional 

Além de utilizar a biblioteca sklearn, o algoritmo também fez o uso da API Keras 

que já implementa o LSTM e o LSTM bidirecional, através das funções LSTM() e 

Bidirectional(), respectivamente. Para este último, passou-se como parâmetro da função a 

própria função LSTM().  

Para desenvolver o modelo a ser usado como classificador de opiniões, utilizou-se a 

mesma proporção da aplicação do algoritmo Naive Bayes, uma porcentagem de 20% dos 
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dados para teste e de 80% para treino do modelo. As etapas úteis a execução desta aplicação: 

i) carregar os dados pré-processados na memória; ii) quando utilizado, carregar o modelo de 

word embedding (GloVe50 ou GloVe600); iii) realizar o treinamento dos dados; iv) executar 

a avaliação das classificações no conjunto de testes. 

Para as arquiteturas, a etapa de treinamento foi executada em 6 iterações de uma 

época, logo o treinamento total consiste de 6 épocas, por questões de tempo de 

processamento e validação através de testes com até 15 épocas de que esse valor (6 épocas) 

retornava o melhor resultado. Assim, após o treinamento de uma época é feita a classificação 

dos dados do conjunto de teste e em seguida a avaliação das classificações feitas. Dessa 

forma, é possível avaliar a evolução do modelo de acordo com o avanço dos treinamentos. 

Após o fim do treinamento das 6 épocas, cada modelo é salvo para que possa ser reutilizado 

futuramente. 

Após essa etapa, faz-se uma análise de desempenho para permitir avaliar qual 

arquitetura consegue melhores resultados para o problema de classificação de opiniões em 

comentários textuais. Para avaliar quão bons foram os resultados obtidos pelas arquiteturas, 

foram avaliadas as métricas já discutidas acima. 

Das métricas avaliadas, para redes neurais, o loss é a métrica de maior relevância, 

uma vez que durante o treinamento, a rede busca sempre o diminuir. Assim, a rede que 

alcançar o menor valor de loss, será considerada a rede com o melhor desempenho. Na 

aplicação deste trabalho calculamos o loss a partir da função de custo já implementada nas 

bibliotecas em uso binary_crossentropy, uma vez em que estamos medindo apenas 2 

parâmetros de classificação, representados vetorialmente como 0 e 1.  

Porém, o loss não tem uma faixa de valores predefinida, sendo, portanto, difícil 

avaliar o quão bons são os resultados apenas com ele. Para auxiliar nessa análise, utiliza-se 

a acurácia, para obtenção de uma visão mais ampla do desempenho.  

Os resultados das diferentes arquiteturas e configurações citadas na seção 3.2, podem 

ser observados nas Tabelas 4 e 5. 
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Arquitetura epc 1 epc 2 epc 3 epc 4 epc 5 epc 6 

LSTM pura 0,6841 0,6491 0,6181 0,3815 0,2876 0,1986 

LSTM com GloVe50 0,6561 0,6294 0,5948 0,5480 0,5056 0,4422 

LSTM com GloVe600 0,4340 0,2070 0,1706 0,3258 0,2884 0,1308 

LSTM bidirecional pura 0,6892 0,6735 0,5667 0,3984 0,2693 0,1183 

LSTM bidirecional com GloVe50 0,5094 0,6038 0,6651 0,7264 0,7170 0,7170 

LSTM bidirecional com GloVe600 0,4682 0,3505 0,4239 0,4053 0,2607 0,1997 

Tabela 4 - Valores de loss por época (epc) e por arquitetura. Elaborado pelo autor. 

 

Arquitetura epc 1 epc 2 epc 3 epc 4 epc 5 epc 6 

LSTM pura 68,52 75,93 68,52 93,33 87,04 91,44 

LSTM com GloVe50 66,67 70,39 70,37 75,93 79,63 79,63 

LSTM com GloVe600 85,19 87,04 92,59 87,04 90,74 92,59 

LSTM bidirecional pura 62,96 53,70 75,93 92,59 90,74 94,44 

LSTM bidirecional com GloVe50 57,41 61,11 72,22 74,07 75,93 83,33 

LSTM bidirecional com GloVe600 81,48 85,19 88,89 88,89 90,74 92,59 

Tabela 5 - Valores de acurácia em porcentagem por época e por arquitetura. Elaborado pelo autor. 

Os tempos de execução dos treinamentos dos dados dos algoritmos podem ser 

vistos na Tabela 6. 
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Arquitetura Tempo de execução do treinamento 

LSTM pura 15 s 

LSTM com GloVe50 40 s 

LSTM com GloVe600 123 s 

LSTM bidirecional pura 491 s 

LSTM bidirecional com GloVe50 26 s 

LSTM bidirecional com GloVe600 856 s 

Tabela 6 - Tempos de execução dos treinamentos dos dados dos algoritmos utilizados. Elaborado pelo autor. 

 

3.4. Resultados Obtidos 

Utilizando o algoritmo Naive Bayes os resultados obtidos, nos casos de teste e 

treinamento, foram acima do esperado e com um tempo de execução baixa. Esse algoritmo 

é reconhecido, inclusive, por este fato, que o leva a ser adequado para aplicações de tempo 

real. Atentou-se, também, o fato de que o resultado não se alterou em termos de acurácia de 

acordo com a escolha da configuração n-gramas. 

Na aplicação dos algoritmos de redes neurais recorrentes testadas, percebe-se que a 

melhor configuração, ou seja, aquela que possui o menor valor de loss e a maior acurácia, é 

a LSTM bidirecional pura. Percebe-se, também, o fato de que com o uso dos word 

embeddings as redes que retornaram os melhores resultados foram as que utilizaram a 

dimensão 600, ou seja, as que possuíam um maior número de vetor de palavras. 

Para fins de novos testes dos modelos implementados, treinados e testados com a 

mesma base de dados, montou-se uma nova base contendo novos comentários de outras 

empresas participantes da pesquisa, os quais também já haviam sido classificados, porém 

não pertenceram à base inicial deste trabalho. A nova base continha 52 comentários, dos 
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quais 33 eram positivos e 19 eram negativos, ou seja, não haviam balanceamento dos dados 

porque não era preciso, uma vez que essa base foi utilizada apenas para validação dos 

modelos gerados.  

Dessa forma, os comentários textuais de opiniões da nova base foram dados como 

entrada para os modelos gerados e sua saída coletada em um arquivo em formato .xlsx 

(Excel) para fins de comparação com a classificação previamente realizada. Os resultados 

dos modelos em relação à classificação desses dados podem ser observados na Tabela 7. 

 

Modelo aplicado Acertos 

Naive Bayes com unigramas 67 

Naive Bayes com bigramas 75 

LSTM pura 88 

LSTM com GloVe50 73 

LSTM com GloVe600 87 

LSTM bidirecional pura 92 

LSTM bidirecional com GloVe50 81 

LSTM bidirecional com GloVe600 87 

Tabela 7 - Acertos em porcentagem na nova base de dados de acordo com o modelo gerado. Elaborado pelo 

autor. 

 Nota-se que os resultados does testes através da nova base seguem razoavelmente os 

resultados discutidos anteriormente. As porcentagens de acerto das redes neurais recorrentes 

seguiram aproximadamente os valores de acurácia dos dados que foram testados da base 

inicial no modelo treinado. Entretanto, as porcentagens de acerto para o algoritmo Naive 

Bayes não seguiram os valores de acurácia vistos na aplicação com a base inicial, o que pode 
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ser explicado por conta da baixa quantidade de dados rotulados nos treinos e testes para gerar 

o modelo. Nas dissertações e artigos lidos na internet as bases que geram os modelos de 

classificação, geralmente, possuem milhares ou milhões de dados classificados, mas neste 

trabalho utilizou-se uma base de, apenas, algumas centenas de dados. 

 É interessante notar que, assim como esperado as redes neurais recorrentes tiveram 

um desempenho superior ao algoritmo de Naive Bayes, entretanto esperava-se que as 

LSTMs que utilizaram os word embeddings tivessem uma taxa de acerto maior, o que não 

foi constatado nos resultados de testes com a nova base de dados. 

3.5. Dificuldades e Limitações 

A maior dificuldade encontrada para o desenvolvimento deste trabalho foi a baixa 

quantidade de dados rotulados para treinamento e teste dos modelos gerados por algoritmos 

de ML. Como discutido anteriormente, normalmente utilizam-se bases de milhares ou 

milhões de dados para treinamento dos modelos. Dessa forma, possivelmente essa seja 

também a maior limitação das análises e comparações entre os diferentes métodos utilizados. 

O autor não chegou a explorar a utilização de outros métodos para classificação de 

opiniões, como os classificadores KNN e suas variantes, o SVM, as árvores de decisão, 

dentre outros tantos que existem na literatura. Foi feita a opção de analisar e testar métodos 

muito distantes em relação a complexidade de implementação, tempo de execução e ao 

contexto de aplicação, por conta do tempo do autor disponível para pesquisa e 

implementação destes métodos. 

Dessa forma, a principal lição que o autor deste trabalho levará de sua execução é 

que a pesquisa científica deve explorar todos os possíveis caminhos que levam a solução 

desejada. Além disso, a ciência enquanto arte precisa de tempo disponível para ser apreciada, 

analisada, incorporada e, só então, colocada em prática. 
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3.6. Considerações Finais 

Neste capítulo foi apresentado todo o desenvolvimento do trabalho, os pensamentos 

que levaram a cada processo e os resultados obtidos. Foram analisados os desempenhos de 

dois métodos de ML para classificação de opiniões, além da comparação de seus modelos 

gerados por meio de diferentes configurações. Suas dificuldades e limitações foram expostas 

e consideradas para o contexto deste trabalho, destacando-se a importância de uma 

quantidade, relativamente, alta de dados para gerar modelos de classificação mais assertivos. 

No próximo capítulo será feita a conclusão do trabalho, e algumas considerações de 

importância para o curso de graduação do autor. 
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CAPÍTULO 4: CONCLUSÃO 

4.1. Contribuições 

Este trabalho teve como objetivo utilizar o ML supervisionado para a construção de 

modelos de análise e classificação de opiniões, em comentários textuais qualitativos. Para 

isto, utiliza-se de uma base proprietária de dados (para treinamento e teste) e dos algoritmos 

de ML Naive Bayes, com uso das técnicas N-gramas, e redes neurais recorrentes LSTM e 

LSTM bidirecional, tendo como finalidade a comparação e seleção do modelo com melhores 

resultados, para uso real nas próximas edições da pesquisa Empresas Humanizadas do Brasil. 

Assim sendo, elenca-se as seguintes contribuições científicas e práticas deste projeto: 

1. Comparação entre diferentes e distantes métodos de classificação de textos 

utilizando-se ML. 

2. Validar o uso de redes neurais recorrentes para classificação de opiniões 

textuais num cenário de aplicação real. 

3. Implementação de algoritmos de ML no escopo das próximas edições da 

pesquisa Empresas Humanizadas do Brasil 

 

4.2. Relacionamento entre o Curso e o Projeto  

O autor deste trabalho não teve a oportunidade de cursar, durante a graduação, 

nenhuma disciplina sobre ML e, também, não teve contato com a linguagem de programação 

Python através do curso. Algo similar, mas ainda muito distante, foi a disciplina de 

Inteligência Artificial, que porventura teve uma abordagem muito prática. Dessa forma, o 

autor considera as disciplinas de Introdução a Ciência da Computação como cruciais para o 

desenvolvimento deste presente trabalho, pois a partir do conhecimento da lógica de 

programação e da linguagem C, o aprendizado de Python e o entendimento dos algoritmos 

de ML foram muito fluidos.  

O autor deste trabalho teve a oportunidade de atuar, em 2018, na 1ª edição da 

pesquisa Empresas Humanizadas do Brasil, com o objetivo ajudar a elevar a humanidade 

por meio da inspiração de negócios mais conscientes, humanizados, sustentáveis e 

inovadores. Durante esse período, o autor desenvolveu uma ferramenta de organização e pré-
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processamento dos dados qualitativos textuais, das Surveys da pesquisa, o que foi um fator 

essencial para desenvolver este trabalho. 

 

4.3. Considerações sobre o Curso de Graduação 

O curso de Engenharia de Computação da USP de São Carlos, quando comparado a 

cursos da mesma área da mesma instituição, como o curso de Engenharia Elétrica e o de 

Ciência da Computação, possui uma carga horária de aulas semestral absurdamente grande, 

o que faz com que trabalhos fora de sala de aula não sejam tão priorizados quanto deveriam. 

É notável que para o aprendizado de conceitos complexos de computação, assim como 

desenvolvimento de habilidades técnicas de criação de códigos eficientes requer prática. 

Nesse sentido, a carga horária de aulas extremamente carregada prejudica o trabalho prático 

dos estudantes, assim como é deixado de lado cada vez mais as atividades extra-curriculares, 

importantes para o desenvolvimento pessoal e profissional dos estudantes.  

Sendo o curso altamente relacionado às tecnologias emergentes da época, é preciso 

que o mesmo se adapte rapidamente a elas, de forma a não ficar atrasado tecnologicamente 

em relação ao mundo como um todo. 

 

4.4. Trabalhos Futuros 

Este projeto foi realizado tendo em mente que, caso bem-sucedido, como foi o caso, 

seria o princípio de uma incorporação de ML nas próximas edições da pesquisa Empresas 

Humanizadas do Brasil. 

Assim, como trabalho futuro, propõe-se a implementação da técnica que se mostrou 

mais apropriada para reconhecimento de opiniões da pesquisa supracitada nas Surveys 

multistakeholders, visando reduzir o tempo gasto da equipe para leitura e classificação 

dessas opiniões. Além disso, através da construção de uma base de dados muito maior, para 
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treinamento a partir do algoritmo de ML, a incorporação online e em on demand deste 

trabalho, para que as empresas possam ter seus relatórios gerados automaticamente. 
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APÊNDICE A – Código Fonte 1 

def clean_str(string): 

    string = re.sub(r"[^A-Za-z0-9(),!?'`$%@#.&+/\|-]", " ", string) 

    string = re.sub(r",", " , ", string) 

    string = re.sub(r"!", " ! ", string) 

    string = re.sub(r"\(", " \(", string) 

    string = re.sub(r"\)", " \) ", string) 

    string = re.sub(r"\?", " \? ", string) 

    string = re.sub(r"\s{2,}", " ", string) 

 

    cleanr = re.compile('<.*?>') 

 

    string = re.sub(r'\d+', '', string) 

    string = re.sub(cleanr, '', string) 

    string = re.sub("'", '', string) 

    string = re.sub(r'\W+', ' ', string) 

    string = string.replace('_', '') 

 

 

    return string.strip() 

 

 


