

1

 UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação

D e p a r t a m e n t o d e S i s t e m a s d e C o m p u t a ç ã o

São Carlos - SP

Análise e classificação de comentários
da pesquisa “Empresas humanizadas do

Brasil” por meio de algoritmos de
aprendizado de máquina

Rosival Rodrigues do Nascimento Neto

[Nome do Aluno]

2

Análise e classificação de comentários da pesquisa
“Empresas humanizadas do Brasil” por meio de

algoritmos de aprendizado de máquina

Rosival Rodrigues do Nascimento Neto

Orientador: André Carlos Ponce de Leon Ferreira de Carvalho

Monografia referente ao projeto de conclusão de curso

dentro do escopo da disciplina SSC0670 Projeto de

Formatura I do Departamento de Sistemas de

Computação do Instituto de Ciências Matemáticas e de

Computação – ICMC-USP para obtenção do título de

Engenheiro de Computação.

Área de Concentração: Inteligência Computacional

USP – São Carlos

2019

i

“Não tente ser uma pessoa de

sucesso. Em vez disso, seja

uma pessoa de valor.”

(Albert Einstein)

ii

Dedicatória

Dedico este trabalho à minha família e, especialmente, ao meu primo e irmão

Gumercindo Silveira Netto, ou simplesmente Guri, que sempre me apoiou, acreditou no meu

potencial e esteve comigo nos momentos fáceis ou difíceis, contribuindo, imensamente, para

essa conquista.

iii

Agradecimentos

Agradeço aos meus pais, Gilvanio e Mábia, que me ensinaram, desde muito cedo,

através do exemplo, o valor que a educação tem na vida de uma pessoa e que só através dela é

possível mudar todo um ecossistema para melhor.

Agradeço à minha avó, Marieta, exemplo de mulher, simplicidade, amor pela família e

trabalho duro, que desde sempre me apoiou e comemorou, junto, todas as minhas conquistas.

A minha irmãzinha, Vivi, por ter sido todos esses seus anos a minha inspiração, o meu

objetivo e a minha vontade de querer mais e melhor para todos.

À Universidade de São Paulo e principalmente a cidade de São Carlos, ambiente

acolhedor e que, sem sombra de dúvidas, mudou a minha forma de pensar e agir enquanto ente

social.

Ao meu orientador, André, carinhosamente chamado de Andrezão, que acreditou em

mim desde o primeiro contato para realizar este trabalho e que com toda sua humildade vem

ajudando diversos alunos a seguirem no mundo do empreendedorismo.

A todos os meus amigos que foram fator chave para o meu desenvolvimento e que foram

suportes durante todos esses anos de graduação. Um agradecimento especial ao time Virou

Passeio, irmãos que levarei no coração para sempre, à República Espírito de Porco (R.E.P.) que

nos anos finais da minha graduação me acolheram como membro da família. E por fim, mas

não menos importante, ao time Enactus USP-São Carlos, que me possibilitou desenvolver

habilidades que a graduação sozinha não me permitiria.

iv

Resumo

A massiva quantidade de dados produzida nos dias de hoje, por conta do advento da

internet e dos sistemas computacionais de alto processamento, já não é mais capaz de ser

manipulada manualmente pelos humanos. Por isso, o campo de estudo de aprendizado de

máquina vem ganhando cada vez mais espaço e relevância no contexto da interação humano-

máquina. Através de métodos e modelos matemáticos surgem diferentes algoritmos que visam

obter informações estratégicas a partir desses dados.

Este trabalho propõe comparar e selecionar um dos modelos de análise e classificação

de opiniões em comentários textuais qualitativos das Surveys multistakeholder da 1ª edição da

pesquisa Empresas Humanizadas do Brasil. Para isto, utiliza-se de uma base proprietária de

dados (para treinamento e teste) e dos algoritmos de aprendizado de máquina Naive Bayes, com

uso da técnica N-gramas, e redes neurais recorrentes LSTM e LSTM bidirecional.

Palavras-chave: Aprendizado de Máquina. Naive Bayes. Redes Neurais Recorrentes.

v

Sumário

LISTA DE TABELAS .. VIII

LISTA DE FIGURAS .. IX

CAPÍTULO 1: INTRODUÇÃO .. 1

1.1. CONTEXTUALIZAÇÃO E MOTIVAÇÃO ... 1

1.2. OBJETIVOS ... 3

1.3. ORGANIZAÇÃO DO TRABALHO .. 4

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA .. 5

2.1. CONSIDERAÇÕES INICIAIS .. 5

2.2. PRÉ-PROCESSAMENTO DE DADOS ... 5

2.3. PROCESSAMENTO DE LINGUAGEM NATURAL (NLP) ... 7

2.3.1. N-Gramas ... 7

2.3.2. Term Frequency - Inverse Document Frequency (TF-IDF) 9

2.4. APRENDIZADO DE MÁQUINA SUPERVISIONADO .. 11

2.5. TÉCNICAS DE ANÁLISE E CLASSIFICAÇÃO DE OPINIÕES .. 11

2.5.1. Algoritmo Naive Bayes ... 12

2.5.2. Redes Neurais Recorrentes (RNR) ... 13

2.5.3. Arquitetura Long Short-Term Memory (LSTM) ... 15

2.5.4. Long Short-Term Memory (LSTM) bidirecional .. 18

2.6. WORD EMBEDDINGS ... 19

vi

2.6.1. Modelos de word embeddings .. 20

2.7. MÉTRICAS ... 21

2.7.1. Logarithmic Loss .. 21

2.7.2. Acurácia ... 22

2.7.3. Matriz de confusão ... 22

2.4. CONSIDERAÇÕES FINAIS .. 23

CAPÍTULO 3: DESENVOLVIMENTO DO TRABALHO 24

3.1. CONSIDERAÇÕES INICIAIS .. 24

3.2. PROJETO .. 24

3.3. DESCRIÇÃO DAS ATIVIDADES REALIZADAS ... 26

3.3.1. Escolha da linguagem de programação .. 27

3.3.2. Balanceamento da base de dados .. 27

3.3.3. Pré-processamento dos dados ... 28

3.3.4. Extração de features dos dados .. 28

3.3.5. Aplicação dos algoritmos de análise e classificação de opiniões 29

3.3.5.1. Algoritmo Naive Bayes .. 29

3.3.5.2. Algoritmo redes neurais recorrentes LSTM e LSTM bidirecional 30

3.4. RESULTADOS OBTIDOS .. 33

3.5. DIFICULDADES E LIMITAÇÕES ... 35

3.6. CONSIDERAÇÕES FINAIS .. 36

vii

CAPÍTULO 4: CONCLUSÃO .. 37

4.1. CONTRIBUIÇÕES .. 37

4.2. RELACIONAMENTO ENTRE O CURSO E O PROJETO ... 37

4.3. CONSIDERAÇÕES SOBRE O CURSO DE GRADUAÇÃO ... 38

4.4. TRABALHOS FUTUROS ... 38

REFERÊNCIAS .. 40

APÊNDICE A – CÓDIGO FONTE 1 ... 43

viii

Lista de Tabelas

TABELA 1 - MATRIZ DE CONFUSÃO DO ALGORITMO NAIVE BAYES UTILIZANDO UNIGRAMAS ... 30

TABELA 2 - MATRIZ DE CONFUSÃO DO ALGORITMO NAIVE BAYES UTILIZANDO BIGRAMAS 30

TABELA 3 - ACURÁCIA E TEMPO DE TREINAMENTO DOS ALGORITMOS 30

TABELA 4 - VALORES DE LOSS POR ÉPOCA (EPC) E POR ARQUITETURA 32

TABELA 5 - VALORES DE ACURÁCIA EM PORCENTAGEM POR ÉPOCA E POR ARQUITETURA 32

TABELA 6 - TEMPOS DE EXECUÇÃO DOS TREINAMENTOS DOS DADOS DOS ALGORITMOS

UTILIZADOS ... 33

TABELA 7 - ACERTOS EM PORCENTAGEM NA NOVA BASE DE DADOS DE ACORDO COM O MODELO

GERADO ... 34

ix

Lista de Figuras

FIGURA 1 - EXEMPLO ILUSTRATIVO DE STOPWORDS ... 6

FIGURA 2 - EXEMPLO ILUSTRATIVO DE RAIZ OU RADICAL DE UMA PALAVRA 6

FIGURA 3 - EXEMPLO ILUSTRATIVO DO TIPO N-GRAMA: UNIGRAMA ... 8

FIGURA 4 - EXEMPLO ILUSTRATIVO DO TIPO N-GRAMA: BIGRAMA .. 8

FIGURA 5 - EXEMPLO ILUSTRATIVO DO TIPO N-GRAMA: TRIGRAMA .. 8

FIGURA 6 - EXEMPLO ILUSTRATIVO DA CONTAGEM DE TERMOS PARA EXTRAÇÃO DE

FEATURES DE DOCUMENTOS ... 9

FIGURA 7 - EXEMPLO ILUSTRATIVO DO TERM FREQUENCY (TF) PARA EXTRAÇÃO DE FEATURES

DE DOCUMENTOS .. 10

FIGURA 8 - EXEMPLO ILUSTRATIVO DO TF-IDF PARA EXTRAÇÃO DE FEATURES DE

DOCUMENTOS .. 11

FIGURA 9 - REPRESENTAÇÃO DE UMA REDE NEURAL RECORRENTE ... 14

FIGURA 10 - VANISH GRADIENT PROBLEM .. 15

FIGURA 11 - ESTRUTURA DE UMA CÉLULA LSTM ... 16

FIGURA 12 - ESTADO DA CÉLULA DE UMA LSTM. .. 16

FIGURA 13 - FORGET GATE DE UMA CÉLULA LSTM .. 17

FIGURA 14 - INPUT GATE DE UMA CÉLULA LSTM ... 17

FIGURA 15 - GATE DE UMA CÉLULA LSTM ... 18

FIGURA 16 - OUTPUT GATE DE UMA CÉLULA LSTM ... 18

FIGURA 17 - ESTRUTURA DE UM LSTM BIDIRECIONAL ... 19

FIGURA 18 - FLUXO DO DESENVOLVIMENTO DESTE TRABALHO ... 26

1

CAPÍTULO 1: INTRODUÇÃO

1.1. Contextualização e Motivação

É fato notável que a cada dia produz-se uma quantidade maior de dados, carregados

de informações, cuja a capacidade humana, limitada, já não é mais capaz de tratar. Por isso

que, no mundo moderno, com auxílio da internet e dos sistemas computacionais, gerenciar

dados de clientes, produtos e serviços, extraindo a maior quantidade possível de vantagem

dessas informações, é uma estratégia chave para qualquer negócio. Assim, da otimização de

produtos e serviços até o próprio relacionamento negócio-cliente, torna-se tarefa crucial

conseguir extrair opiniões e/ou emoções a partir dessas fontes de dados.

Para Alves et al. (2014), a análise de comentários expressos nessas fontes de dados

requer muito esforço quando tratada de forma manual, principalmente devido ao grande

volume de dados gerados. Por isso, surgiram novas tecnologias que tornam possível obter

novos conhecimentos a partir dessa grande massa de informações. Dentre elas, aprendizado

de máquina (ML, do inglês, Machine Learning) é um dos campos do conhecimento que mais

crescem, no intuito de trazer luz a solução desses problemas, por meio da intersecção da

ciência da computação, da matemática aplicada e da estatística. O progresso recente na área

de ML foi impulsionado pelo desenvolvimento de novos algoritmos e teoria de aprendizado

e pela explosão contínua na disponibilidade de dados on-line e computação de baixo custo

(M. I. JORDAN; T. M. MITCHELL, 2015). Sendo que, uma tendência mais recente é a

análise de sentimentos ou mineração de opiniões, que busca identificar a opinião por trás de

um texto, possibilitando obter feedbacks emocionais sobre produtos, serviços, organizações,

figuras públicas e outros fontes de informação. Análise de sentimentos também é comumente

conhecida por vários outras termos, tais como: extração de opinião, mineração de

sentimento, análise de subjetividade, análise afetiva, análise de emoções e mineração de

opinião (LIU, 2012).

Ainda segundo Liu (2012), uma opinião é formada por dois elementos principais: um

alvo e um sentimento expresso em relação ao alvo. O alvo pode ser definido como uma

entidade, ou seja, representa uma pessoa, marca de um determinado produto, ou qualquer

2

sujeito que esteja relacionado à opinião. Já o sentimento é a opinião ou emoção expressa em

relação ao alvo. Por exemplo: “eu amo a empresa onde eu trabalho”. Nesta frase, a parte “a

empresa onde eu trabalho” representa o alvo, e a palavra “amo” representa o sentimento

expresso em relação a empresa.

Entretanto, em massivas quantidades de dados, inúmeros desafios surgem na análise

destes sentimentos ou opiniões, uma vez que podem existir desde erros provenientes dos

próprios textos (como os ortográficos ou sintáticos) até erros provenientes dos próprios

dados (como a estrutura de dados ou dados que não fazem parte do contexto da aplicação).

Além disso, esses desafios se acentuam quando as análises textuais são na língua portuguesa,

pois segundo Inoki (1992), a variação dos tempos e formas verbais, regras de concordância

e flexões verbais, são desafios comumente encontrados no idioma português.

A análise de opiniões utiliza diversas técnicas e campos da computação moderna de

maneira integrada, desde estatística, passando por mineração de dados, até o processamento

de linguagem natural (NLP, do inglês Natural Language Processing). Abordagens essas que,

se baseiam no ML supervisionado, no qual algoritmos são utilizados para induzir modelos

preditivos por meio da observação de um conjunto de objetos rotulados (VON LUXBURG

E SCHÖLKOPF, 2008).

Neste contexto, análises de opiniões podem ser utilizadas em pesquisas do tipo

Survey que, segundo Figueiredo (2004), destina-se tanto a obtenção de informações quanto

à prevalência, distribuição e inter-relação de variáveis no âmbito de uma população e, nos

dias de hoje, coletam massivas informações textuais, qualitativas, para análises, por conta

da conectividade que facilita a pulverização, em uma população, desse tipo de pesquisa.

Inspirado nisso, este trabalho explora o uso da análise de opiniões aplicada a

pesquisa, do tipo Survey, destinada aos multistakeholders (diferentes atores de uma

organização, como diretores, colaboradores, investidores, sociedade e afins) de diferentes

empresas, participantes da 1ª edição da Pesquisa Empresas Humanizadas do Brasil, na qual

o autor deste trabalho teve a oportunidade de atuar, em 2018, sob a liderança do pesquisador

e doutorando pelo curso de Engenharia de Produção, Pedro Paro (Escola de Engenharia de

São Carlos - USP), com o objetivo de ajudar a elevar a humanidade por meio da inspiração

3

de negócios mais conscientes, humanizados, sustentáveis e inovadores. Durante esse

período, o autor desenvolveu uma ferramenta de organização e pré-processamento dos dados

qualitativos textuais, das Surveys, para serem lidos pelos membros da pesquisa e

classificados em: comentários positivos e negativos. Dessa forma, enxergou-se a

oportunidade de aproveitar a ferramenta desenvolvida e o conhecimento adquirido no curso

de graduação para desenvolver este trabalho.

Este projeto tem como principais contribuições: (i) automatizar o processo de análise

das opiniões e diminuir o tempo gasto da equipe para classificação dos comentários

qualitativos textuais; (ii) construir a estrutura de base para o desenvolvimento futuro de uma

inteligência artificial, agregando valor a pesquisa no contexto de inovação; e (iii) comparar

dois algoritmos de ML, muito diferentes, para análise de opiniões em Surveys

multistakeholders.

1.2. Objetivos

Este trabalho tem como objetivo desenvolver um modelo de análise e classificação

de opiniões, a partir de comentários qualitativos textuais das Surveys multistakeholders da

1ª edição da Pesquisa Empresas Humanizadas, como também fazer um comparativo entre

diferentes algoritmos de ML para tal finalidade. O estado da arte para análise e classificação

de opiniões emprega diversas ferramentas e métodos que se baseiam em diferentes

estratégias, tais como ML, NLP, mineração de dados, método de Naive Bayes, redes neurais

ou mesmo a combinação de tais técnicas.

O modelo proposto neste trabalho será baseado em algoritmos de ML

supervisionado, para análise e classificação de opiniões, a partir de um conjunto de

treinamento proprietário. Para tal, irá se fazer o uso e comparação das técnicas de Naive

Bayes com N-gramas e das redes neurais LSTM (do inglês, Long Short Term Memory),

visando escolher a arquitetura que retorna os melhores resultados para o conjunto de dados

utilizados nesta proposta.

4

1.3. Organização do Trabalho

No Capítulo 2 são apresentadas as técnicas, métodos e modelos utilizados no

desenvolvimento deste projeto, bem como a revisão da terminologia básica utilizada. A

seguir, no Capítulo 3, descrito o projeto desenvolvido, todos os seus procedimentos,

implementações e resultados obtidos. Finalmente, no Capítulo 4, são apontadas as principais

contribuições de projeto, os trabalhos futuros que podem utilizá-lo ou melhorá-lo, assim

como sua relação com o curso de graduação.

5

CAPÍTULO 2: REVISÃO BIBLIOGRÁFICA

2.1. Considerações Iniciais

Neste capítulo são apresentados os principais conceitos, terminologias abordadas na

literatura, além das abordagens e técnicas no que diz respeito a análise e classificação de

opiniões textuais com o uso de ML. É apresentada a fundamentação teórica pertinente no

que diz respeito aos modelos necessários para o desenvolvimento da aplicação de pré-

processamento de dados e NLP. Além disso, discorre-se também sobre as arquiteturas e

algoritmos de ML pertinentes à aplicação prática deste trabalho.

2.2. Pré-processamento de dados

Considerando o grande volume de dados disponível em diversas aplicações, com

frequência os conjuntos de dados não possuirão uma qualidade boa o suficiente para a

extração de conhecimento novo, útil e relevante por algoritmos de ML. As principais causas

de baixa qualidade de dados incluem a ocorrência de atributos irrelevantes, valores ausentes

ou redundantes (PADILHA, V. A; CARVALHO, A. C. P. L. F, 2017).

Sendo assim, o primeiro passo na elaboração de um modelo de análise e classificação

de opiniões é fazer o tratamento da base de dados, ou seja, remover inconsistências, como

registros que não estão no formato correto, que não estão classificados ou que não possuam

comentários. Além disso, tratar os dados significa também colocá-los em um formato no

qual seja mais fácil obter informações.

Uma das técnicas muito utilizadas no pré-processamento de textos (que inclui a

análise e classificação de opiniões) é a remoção das chamadas “palavras de parada” (do

inglês, stopwords), que são palavras removidas antes ou após a aplicação de técnicas de

NLP, por serem consideradas irrelevantes no contexto trabalhado. Geralmente é um conjunto

de preposições, artigos, alguns advérbios e alguns verbos, como demonstra a Figura 1.

6

Figura 1 - Exemplo ilustrativo de stopwords. Elaborado pelo autor.

Outra técnica muito comum é o stemming, que consiste em reduzir as palavras

flexionadas, ou conjugadas, em uma língua para a sua raiz, ou seu radical. O radical de uma

palavra é a menor parte da mesma que contém seu significado léxico, sem os afixos ou

flexionais, ou seja, é um morfema básico (que mostra o sentido básico da palavra), vide

Figura 2.

Figura 2 - Exemplo ilustrativo de raiz ou radical de uma palavra. Adaptado Motta A. (2010).

Assim, através das técnicas de pré-processamento obtêm-se um vocabulário menor

de palavras no modelo, elimina-se as redundâncias ocasionadas por palavras muito similares

e tem-se um ganho de tempo computacional.

7

2.3. Processamento de Linguagem Natural (NLP)

O NLP, se refere ao conjunto de técnicas computacionais que, combinadas com

informações linguísticas, permitem que computadores representem e utilizem

conhecimentos expressados em frases de linguagem natural (BARROSO, Y. M, 2016). Ou

seja, o objetivo da NLP é ajudar os computadores no entendimento, interpretação e

manipulação da informação de texto (como classificação e identificação de idioma) e áudios.

Essa técnica pode ser fragmentada em tarefas mais simples como Tokenização e

identificação de classes gramaticais, ou em mais complexas como Semantic Role Labeling e

Hedge Detection (CRESTANA, C. E. M, 2010). A seguir são introduzidos dois dos métodos

de NLP, o N-Gramas e o Term Frequency - Inverse Document Frequency (TF-IDF).

2.3.1. N-Gramas

 A abordagem para construção do dicionário de palavras a partir de um ou mais itens

lexicais agrupados é conhecida como N-gramas. Esta abordagem consiste em uma

subsequência de “n” elementos em uma sequência maior, os quais são definidos de acordo

com a quantidade de elementos que os compõem. Geralmente se trabalha com 3 tipos de N-

gramas:

• Unigrama (Figura 3), que é basicamente cada uma das palavras que compõem uma

sentença ou frase, muito utilizado em trabalhos de classificação em tópicos e em

análises de sentimentos. Muito confundido com os tokens em artigos ou publicações

onlines.

• Bigrama (Figura 4), que é uma concatenação de cada 2 palavras que compõe o texto,

sendo a ordem um fator muito importante. São utilizados em análises de sentimentos

para capturar combinações negativas de palavras.

• Trigrama (Figura 5), é uma composição de 3 palavras, pouco utilizado nas atividades

de classificação em tópicos ou análises de sentimentos por conta da sua baixa

performance em relação aos outros tipos supracitados.

8

Figura 3 - Exemplo ilustrativo do tipo N-grama: unigrama. O sinal de pontuação não é considerado não tem

nenhum valor semântico para a aplicação. Elaborado pelo autor.

Figura 4 - Exemplo ilustrativo do tipo N-grama: bigrama. O sinal de pontuação não é considerado não tem

nenhum valor semântico para a aplicação. Elaborado pelo autor.

Figura 5 - Exemplo ilustrativo do tipo N-grama: trigrama. O sinal de pontuação não é considerado não tem

nenhum valor semântico para a aplicação. Elaborado pelo autor.

+

9

2.3.2. Term Frequency - Inverse Document Frequency (TF-IDF)

Ao considerarmos uma sentença ou um documento, é possível observar a ordem das

letras e das palavras, bem como o número de vezes em que cada palavra se repete no texto.

Uma abordagem muito comum para extração de features de documentos e sentenças é

realizar a contagem de termos (Figura 6), ou seja, contar a quantidade de aparições de um

mesmo n-grama, pois as palavras mais comuns podem ditar o contexto de um documento.

Entretanto, a contagem de termos dá muita relevância para frases ou documentos que tem

mais palavras, ficando com um peso desbalanceado para muitos casos.

Figura 6 - Exemplo ilustrativo da contagem de termos para extração de features de documentos. Elaborado

pelo autor.

Uma proposta para mitigar o problema citado é utilizar o Term Frequency (TF) ou a

frequência dos termos (Figura 7), ou seja, medir a probabilidade de uma determinada palavra

aparecer dentro de uma sentença ou documento. O TF é a medida da frequência do termo 𝑡𝑗

no documento 𝑑𝑖. A ideia básica, segundo Aranha (2007), é de que os termos que mais

aparecem possuem maior relevância/peso do que aqueles que aparecem com menos

frequência no documento. Assim sendo, atribui-se a 𝑎𝑖𝑗 o valor 𝑇𝐹(𝑡𝑗, 𝑑𝑖), como na Equação

(1).

 𝑎𝑖𝑗 = 𝑇𝐹(𝑡𝑗 , 𝑑𝑖) (1)

10

Figura 7 - Exemplo ilustrativo do Term Frequency (TF) para extração de features de documentos.

Elaborado pelo autor.

Apesar de TF ser uma métrica muito boa, ela possui a limitação no que se refere aos

termos que aparecem muitas vezes e que não possuem a informação ou o significado daquele

documento (como as stopwords) uma vez em que estes possuirão uma frequência relativa

muito alta.

Nesse sentido, segundo Aranha (2007), Inverse Document Frequency (IDF) é uma

medida que varia inversamente ao número de documentos que contém a palavra 𝑡𝑗, c, em um

conjunto de documentos 𝑁. Logo, essa medida, representada na Equação (2) pode ser

utilizada para dar um peso menor ao problema.

 𝐼𝐷𝐹 = 𝑙𝑜𝑔
𝑁

𝑐
 (2)

Dessa forma, surge uma métrica mais robusta que é o TF-IDF (Figura 8), oriundo de

modelos de análise discriminante estatística baseada em conceitos Bayesianos, que, em

linhas gerais, procura achar as palavras que mais discriminam o conjunto do documento

analisado. Durante o processo de aplicação do índice no documento, são atribuídos pesos as

palavras, baseado em suas frequências, sendo que, o inverso da frequência em documentos,

que dá peso as palavras raras, como pode ser visto na Equação (3).

11

 𝑎𝑖𝑗 = 𝑇𝐹𝐼𝐷𝐹(𝑡𝑗, 𝑑𝑖) = 𝑇𝐹(𝑡𝑗 , 𝑑𝑖) × 𝑙𝑜𝑔
𝑁

𝑐
 (3)

Figura 8 - Exemplo ilustrativo do TF-IDF para extração de features de documentos. Elaborado pelo autor.

2.4. Aprendizado de máquina supervisionado

Em ML supervisionado, algoritmos são utilizados para induzir modelos preditivos

por meio da observação de um conjunto de objetos rotulados (VON LUXBURG E

SCHÖLKOPF, 2008), normalmente chamado de conjunto de treinamento. Os rótulos

contidos em tal conjunto correspondem a classes ou valores obtidos por alguma função

desconhecida. Desse modo, um algoritmo de classificação buscará produzir um classificador

capaz de generalizar as informações contidas no conjunto de treinamento, com a finalidade

de classificar, posteriormente, objetos cujo rótulo seja desconhecido (PADILHA, V. A;

CARVALHO, A. C. P. L. F, 2017).

2.5. Técnicas de análise e classificação de opiniões

A análise e classificação de opiniões, ou análise de sentimentos, é o uso de algoritmos

de ML e processamento natural de linguagem para extrair insights ou informações valiosas,

12

automaticamente, das opiniões de pessoas em relação a determinado produto, serviço,

organização ou pessoa pública. Sendo que essa análise, classificação e extração de

significado pode revelar informações de altíssimo valor estratégico para modelos de

negócios e/ou organizações.

Essa análise e classificação em comentários textuais qualitativos pode ser feita de

várias formas e utilizar uma série de algoritmos diferentes para o mesmo fim, dentre os quais

vale destacar as árvores de decisão, modelos probabilísticos (Naïve Bayes, Redes

Bayesianas, Máxima Entropia), lineares (Redes Neurais, e SVM), e modelos baseados em

regras (WILSON, WIEBE E HOFFMANN, 2009).

2.5.1. Algoritmo Naive Bayes

 Naive Bayes é um método de classificação muito simples, mas poderoso (PADILHA,

V. A; CARVALHO, A. C. P. L. F, 2017). Consiste de um classificador probabilístico com

base no teorema de Bayes com forte suposição independência entre as características, ou

seja, assume que a presença de uma determinada feature - características que descrevem um

objeto e, também, entradas dos algoritmos de ML - não tem relação com outras, por isso

Naive. Esse método utiliza dados de treino para formar um modelo probabilístico baseado

na evidência das features nos dados.

 O algoritmo de Naive Bayes, utiliza a Equação 4 que consiste em encontrar uma

probabilidade a posteriori (ou condicionada) de A condicional a B, pela probabilidade a

posteriori de B condicional a A e pelas probabilidades a priori de A e B.

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 (4)

 Naive Bayes é recomendado como uma das melhores alternativas para problemas de

análises de sentimentos e classificação de textos, quando a correlação entre os fatores não é

extremamente importante. Além disso, o método tem uma grande aplicação em previsões de

13

tempo real, por possuir uma velocidade relativamente alta e precisar de poucos dados para

realizar classificações.

2.5.2. Redes Neurais Recorrentes (RNR)

 As redes neurais recorrentes são redes neurais capazes de processar dados em

sequência e têm como propriedade a habilidade de usar informação contextual ao mapear

sequências de entrada e saída. Por isso, é amplamente adotada em modelagem de linguagens

e em tarefas que envolvem o NLP.

 Esse tipo de rede opera em loops que fornecem à rede um feedback

(retroalimentação) constante a respeito do estado das entradas processadas anteriormente, o

que permite com que a RNR persista em memória os estados dessas entradas, influenciando

o que é obtido na saída.

 Logo, a decisão de uma rede recorrente alcançada na etapa de tempo t-1 afeta a

decisão que alcançará um momento mais tarde na etapa de tempo t. Assim, as redes

recorrentes têm duas fontes de entrada, o presente e o passado recente, que se combinam

para determinar como respondem a novos dados, da mesma forma que os humanos fazem

na vida.

 Em uma RNR a informação da camada oculta é adicionada no período anterior, como

pode ser visto na equação 5. Além disso, os parâmetros que fazem a transição da informação

entre as camadas ocultas de diferentes períodos são sempre os mesmos. Isso mostra que

redes neurais recorrentes compartilham parâmetros através do tempo.

 ℎ𝑡= 𝜙(𝑏ℎ + 𝑥𝑈𝑥 + ℎ𝑡−1𝑊𝑋) (5)

Como ilustrado na Figura 9, as camadas ocultas h carregam ao longo do tempo as

features x combinadas a matriz de peso U. As matrizes de peso U, V, W são usadas

repetidamente pela rede, sendo que todas as camadas ocultas h compartilham o mesmo peso

14

W. A influência dos parâmetros computados inicialmente em uma RNR sofre decaimento

expressivo ao longo dos ciclos da rede. Isto é conhecido como vanishing gradient problem.

Figura 9 - Representação de uma rede neural recorrente. Adaptado de Luís Fred.

 Todos os estados ocultos que ocorrem nos tempos t+1 são sensíveis as novas entradas

x, ou seja, as entradas inicialmente computadas perdem a influência ao longo dos ciclos da

RNR, acarretando no vanishing gradient. Em outras palavras, as camadas ocultas h são

sensíveis às entradas subsequentes, fazendo com que a rede “esqueça” dos parâmetros que

aprendeu com as entradas iniciais, como ilustra a Figura 10 na qual a camada h perde a

influência da entrada 1 (marcada na cor preta) ao longo do ciclo da RNR, e no ciclo 7 já não

influencia mais a entrada x.

15

Figura 10 - Vanish Gradient Problem. Adaptado de Luís Fred.

2.5.3. Arquitetura Long Short-Term Memory (LSTM)

 A arquitetura LSTM foi inicialmente proposta por Hochreiter; Schmidhuber (1997)

com o intuito de resolver o problema de persistência da informação de longo prazo nas RNR,

o vanishing gradient. Para isso, a arquitetura utiliza um mecanismo específico em suas

camadas ocultas, denominado células de memória, que calculam os pesos que os conectam

de forma a evitar o problema supracitado. Dessa forma, a LSTM tem a capacidade de lembrar

das informações que armazenou mesmo depois de várias iterações recorrentes, mas também

de esquecer o estado anterior quando a informação não é mais necessária.

 Uma célula LSTM é composta por três portões que controlam diferentes

comportamentos: portão de entrada (input gate), portão de esquecimento (forget gate) e

portão de saída (output gate). Todos os portões têm uma sigmoid (σ) como função de

linearidade para controlar o fluxo de informações dentro da célula (BISPO T. D, 2018).

 Cada célula de uma LSTM (representada na Figura 11) combina os valores do estado

anterior, da memória atual e da entrada, executando uma série de operações que define se a

16

informação computada anteriormente irá seguir inalterada ao longo da rede, ou que parcela

dessa informação será eliminada, dando lugar a novas informações dentro da célula.

Figura 11 - Estrutura de uma célula LSTM. Retirado do blog de Christopher Olah.

A chave para uma LSTM é o estado da célula, ou a linha horizontal que percorre a

parte superior da Figura 12. Esse estado é como uma correia transportadora, que percorre

toda a cadeia, com apenas algumas interações lineares menores, tornando mais fácil a fluidez

de informações inalteradas.

Figura 12 - Estado da célula de uma LSTM. Retirado do blog de Christopher Olah.

O forget gate (Figura 13) controla a entrada da célula LSTM (𝐶𝑡) através da camada

sigmoide (σ), que possui a propriedade específica de retornar valores entre 0 e 1. Assim,

quanto mais próximo de 1 for o valor da sigmoide, mais informações serão mantidas da

célula anterior (𝐶𝑡−1) e passadas para frente. 𝑊𝑓 e 𝑏𝑓, são, respectivamente, o peso e o valor

bias para o portão de entrada.

17

Figura 13 - Forget Gate de uma célula LSTM. Retirado do blog de Christopher Olah.

A célula LSTM, em seguida, decide quais informações novas serão armazenadas no

estado da célula de memória. Primeiramente, o input gate (Figura 14) através da função σ

decide quais valores do estado atual da célula serão atualizados. Em seguida, a função 𝑡𝑎𝑛ℎ

calcula um novo valor (𝐶̃𝑡) para ser multiplicado ponto a ponto com o vetor resultante do

passo anterior.

Figura 14 - Input Gate de uma célula LSTM. Retirado do blog de Christopher Olah.

O vetor que contêm os valores a serem adicionados ao estado da célula é combinado

com a saída do input gate, em seguida somado ao produto entre forget gate e a matriz de

estados ocultos atual da célula, como pode ser visto na Figura 15.

18

Figura 15 - Gate de uma célula LSTM. Retirado do blog de Christopher Olah.

Por fim, para decidir o que irá para a saída da célula (ℎ𝑡) dois passos são necessários:

primeiro a sigmoide (σ) decide quais partes do estado da célula 𝐶𝑡 irão para a saída 𝑜𝑡. Então,

o estado da célula é passado como parâmetro para uma função tangente hiperbólica (𝑡𝑎𝑛ℎ)

e então combinada com a saída o valor do σ, como pode ser visto na Figura 16. A função

𝑡𝑎𝑛ℎ força os valores a ficarem entre -1 e 1, fornecendo uma faixa de valores mais ampla

para ser armazenada.

Figura 16 - Output Gate de uma célula LSTM. Retirado do blog de Christopher Olah.

2.5.4. Long Short-Term Memory (LSTM) bidirecional

LSTM bidirecional (Figura 17) é uma extensão do LSTM tradicional que pode

melhorar o desempenho e a acurácia do modelo em atividades de classificações. Ela pode

ser treinada usando todas as informações de entrada, do passado e do futuro, disponíveis de

um tempo específico (SCHUSTER; PALIWAL, 1997). Nos problemas onde todos os steps

de entrada estão disponíveis, o LSTM bidirecional treina dois ao invés de um LSTM na

19

sequência de entrada. O primeiro como está e o outro como uma cópia invertida da sequência

de entrada. Ao utilizar informações do passado e do futuro como entrada é possível

minimizar a função objetivo sem a necessidade de atrasos para a inserção de novas

informações (SCHUSTER; PALIWAL, 1997). Isso fornece um contexto adicional à rede

que resulta em um aprendizado mais rápido e mais completo do problema.

Figura 17 - Estrutura de um LSTM Bidirecional. Retirado do site i2tutorials.

2.6. Word Embeddings

No contexto de NLP, convertemos dados textuais em representações vetoriais

contendo valores numéricos que refletem várias propriedades linguísticas, tais como

relacionamentos semânticos e contextuais. Estes, representam um grande desafio quanto a

manutenção da coerência das representações de forma a preservar relações potencialmente

importantes para as diversas tarefas.

Os word embeddings, são representações vetoriais (a princípio de palavras) capazes

de manter a relação entre duas palavras semanticamente relacionadas sem perder a

habilidade de codificá-las de maneiras distintas (GOODFELLOW; BENGIO;

COURVILLE, 2016). Dessa forma, essas representações são amplamente utilizadas para

sanar os desafios supracitados. No espaço vetorial do word embeddings, palavras que

20

aparecem frequentemente em contextos muito parecidos estão mais próximas umas das

outras, constituindo uma vizinhança de palavras semelhantes semanticamente. Contudo,

ressalta-se que essas representações vetoriais ainda sofrem com o desafio de representar

palavras que têm múltiplos significados ou sentidos (LANDEGHEM, 2016).

2.6.1. Modelos de word embeddings

Muitos algoritmos foram desenvolvidos para gerar modelos de word embeddings e

disponibilizá-los para a comunidade. Tais modelos podem ser divididos em duas famílias de

métodos (HARTMANN et al., 2017): Os primeiros são aqueles métodos que trabalham com

a matriz de co-ocorrência de palavras, como GloVe (PENNINGTON; SOCHER;

MANNING, 2014). E os segundos, são aqueles que trabalham com modelos preditivos

(baseado na vizinha das palavras), como o Word2Vec (MIKOLOV et al., 2013). Os

principais modelos de geração de word embeddings são resumidos por Hartmann et al.

(2017):

• The Global Vectors (GloVe): algoritmo de aprendizado não supervisionado

que computa os vetores através da análise da matriz M de co-ocorrência de

palavras construída através das informações contextuais das palavras do

corpus.

• Word2vec: possui duas diferentes estratégias de treinamento: (i) Continuous

Bag-ofWords (CBOW), no qual o modelo tenta prever a palavra do meio

suprimida dentro de uma sequência de palavras, e (ii) Skip-Gram, o modelo

que serve para predizer a vizinhança de uma da palavra.

• Wang2Vec: modificação do Word2vec cujo objetivo é considerar a ordem

das sequências, ao contrário da arquitetura original.

• FastText: nesta arquitetura, word embeddings são associados N-gramas de

caracteres, sendo as palavras codificadas como a combinação dessas

representações. Portanto, esse método tenta capturar informações

morfológicas para construir os seus word embeddings.

21

Vetores de palavras, gerados através de todos os modelos citados acima, são

disponibilizados publicamente, para download, pelo Repositório de Word Embeddings do

Núcleo Interinstitucional de Linguística Computacional (NILC), inclusive em diferentes

dimensões. Esses vetores foram gerados por meio de um corpus em português do Brasil e

português Europeu.

O modelo GloVe executa significativamente melhor do que as outras linhas de base,

geralmente com menor tamanhos de vetor e corpora (PENNINGTON J. SOCHER R.;

MANNING C. D, 2014). Levando-se em conta essa citação e a necessidade deste trabalho

de gerar word embeddings usando corpora em português, adotar-se-á os vetores do NILC

construídos através do modelo GloVe de 50 e 600 dimensões (GloVe50 e GloVe600,

respectivamente). O primeiro foi escolhido por ser o menor vetor de palavras do modelo e,

para a prática deste trabalho, não se escolheu o maior modelo (Glove 1000) por conta do

espaço disponível em disco do dispositivo computacional onde a aplicação foi desenvolvida,

selecionando-se, então, o segundo maior modelo: GloVe600.

2.7. Métricas

Uma das coisas mais importantes ao avaliar diferentes algoritmos de ML, é a escolha

das métricas que irão avaliar os diferentes modelos, uma vez que existem métricas mais

indicadas para cada tipo de problema.

2.7.1. Logarithmic Loss

O Logarithmic Loss (ou loss), é uma métrica de desempenho cuja finalidade é avaliar

as predições de probabilidades de uma determinada entrada pertencer a uma determinada

classe. Essa métrica possui valores de 0 a 1, que pode ser vista como a porcentagem de

confiabilidade de uma classificação. E como se trata de uma medida de loss, quanto menor,

melhor. Sendo 0, um valor de erro perfeito (BROWNLEE, 2016).

22

 O Logarithmic Loss utiliza a Equação 5 quando o número de classificadores é igual

a 2, como no caso deste trabalho. Na equação, y é o indicador binário (0 ou 1) para quando

uma classe é a classificação correta para uma observação, e p é probabilidade prevista do

modelo de que uma observação seja da classe.

 𝑙𝑜𝑠𝑠 = −(𝑦𝑙𝑜𝑔(𝑝) + (1 − 𝑦)𝑙𝑜𝑔(1 − 𝑝)) (5)

2.7.2. Acurácia

A acurácia (ou taxa de acerto) é porcentagem de predições feitas corretamente em

relação a todas as predições feitas. A acurácia é a métrica mais utilizada na avaliação de

algoritmos para problemas de classificação (BROWNLEE, 2016). Na equação 6 pode-se

observar como ela é calculada.

 𝑎𝑐𝑢𝑟á𝑐𝑖𝑎 =
𝑁º 𝑑𝑒 𝑎𝑐𝑒𝑟𝑡𝑜𝑠

𝑁º 𝑑𝑒 𝑑𝑎𝑑𝑜𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑑𝑜𝑠
 (6)

2.7.3. Matriz de confusão

A Matriz de Confusão é uma representação muito útil para a acurácia de um modelo

com duas classes. Basicamente, é uma tabela que possui uma linha e uma coluna para cada

classe. Cada célula possui o número - ou porcentagem - de predições da classe da linha atual

que pertencem à classe da coluna atual (BROWNLEE, 2016).

A partir da Matriz de Confusão, é possível retirar algumas informações sobre cada

classe, que são utilizadas para calcular diversas métricas (HAN et. al., 2011), que são:

• Verdadeiro Positivo (TP): dados que foram corretamente classificados pelo

classificador.

• Verdadeiro Negativo (TN): dados corretamente classificados como não

pertencentes à uma determinada classe.

23

• Falso Positivo (FP): dados não pertencentes a uma classe, classificados como

pertencentes.

• Falso Negativo (FN): dados pertencentes a uma classe, classificados como

não pertencentes.

2.4. Considerações Finais

Neste capítulo discorreu-se sobre alguns conceitos e terminologias empregados no

campo de estudo do ML e do processamento natural de linguagens. Além disso, abordou-se

as técnicas de pré-processamento de dados e os algoritmos e modelos matemáticos

necessários para a análise e classificação de opiniões em comentários textuais. Ainda, foi

possível discorrer sobre os diferentes modelos de word embeddings e sua aplicação no

contexto do processamento natural de linguagem. No capítulo seguinte descrever-se-á em

detalhes o desenvolvimento deste trabalho.

24

CAPÍTULO 3: DESENVOLVIMENTO DO

TRABALHO

3.1. Considerações Iniciais

Neste capítulo são apresentadas todas as etapas de desenvolvimento do projeto, desde

os detalhes de implementação dos métodos utilizados até a discussão dos resultados obtidos

em cada etapa do desenvolvimento do trabalho. Além disso, também serão comparados os

modelos gerados a partir dos métodos implementados. Ao final, serão discutidas as

principais dificuldades e limitações do trabalho desenvolvido.

3.2. Projeto

O objetivo deste trabalho é utilizar o conceito prático de ML supervisionado para a

construção de modelos de análise e classificação de opiniões, em comentários textuais

qualitativos das Surveys multistakeholders da pesquisa Empresas Humanizadas do Brasil.

Para isto, utiliza-se de uma base proprietária de dados (algumas das próprias surveys, para

treinamento e teste) e dos algoritmos de ML Naive Bayes, com uso das técnicas N-gramas,

e redes neurais recorrentes LSTM uni e bidirecional. Estes algoritmos foram escolhidos por

representarem diferentes contextos de aplicação: i) o algoritmo Naive Bayes é um dos mais

simples, muito rápido, retorna um resultado razoável para classificações e é recomendado

para aplicações em tempo real; ii) as redes neurais recorrentes LSTM uni e bidirecionais são

algoritmos mais trabalhados, com um tempo de execução maior de acordo com a

configuração utilizada, portanto não sendo recomendadas para aplicações em tempo real,

mas que retornam um resultado muito assertivo. Dessa forma, espera-se, neste trabalho, que

os modelos gerados a partir de redes neurais recorrentes LSTM tenham os melhores

resultados, por conta dos conceitos já discutidos anteriormente.

Considerando a já existência de uma base de dados proprietária, o primeiro passo é a

escolha da linguagem de programação apropriada para o processo de desenvolvimento desta

25

aplicação. Para isto, a linguagem de programação Python foi escolhida, pois possibilitava

uma implementação enxuta e limpa dos métodos necessários e já discutidos anteriormente.

A linguagem é de fácil aprendizado, escalável, se integra com diversos tipos de sistemas

operacionais, possui uma grande comunidade para apoio nas dificuldades e dúvidas e,

principalmente, contém uma grande variedade de bibliotecas em crescimento (quase que

exponencial) para aplicações de diversos tipos, como ML e NLP.

Considerando a existência de uma base proprietária de dados, o passo seguinte é fazer

o balanceamento dos dados rotulados, buscando não enviesar os algoritmos de classificação.

Logo, no conjunto de treino e teste da base de dados equilibra-se a quantidade de comentários

textuais rotulados como positivos ou negativos, em 50% para cada (no caso de uma base de

dados que contém apenas 2 rótulos).

 Em seguida, faz-se o pré-processamento destes dados a partir de técnicas como

stopwords, stemming ou tokenização, já discutidas anteriormente. Além disso, caso

necessário, pode-se elaborar algumas funções de limpeza, adequadas ao contexto desses

dados. Segue a extração dos rótulos, a partir da função de uma das bibliotecas do Python,

que serão os classificadores dos nossos dados.

Nos passos que seguem, geram-se as features, que irão compor o vocabulário da

aplicação, a partir dos métodos de processamento de linguagem de natural, mencionados

anteriormente.

Após toda fase de processamento dos dados aplicam-se os algoritmos de análise e

classificação de opiniões com diferentes configurações (mantendo-se um backup da base de

dados já processada para ser utilizada em cada nova configuração, não importando a ordem

de aplicação):

• Aplicação do algoritmo Naive Bayes

o com features unigramas e bigramas

• Aplicação do algoritmo redes neurais recorrentes LSTM

o sem word embeddings pré-treinadas;

o com word embeddings pré-treinadas GloVe50;

o com word embeddings pré-treinadas GloVe600;

26

• Aplicação do algoritmo redes neurais recorrentes LSTM bidirecional

o sem word embeddings pré-treinadas;

o com word embeddings pré-treinadas GloVe50;

o com word embeddings pré-treinadas GloVe600;

O objetivo de utilizar diferentes algoritmos e configurações é escolher aquela que

entrega o modelo com maior acuraria no processo de treinamento e teste de classificação dos

comentários. O fluxo da aplicação prática deste trabalho pode ser visto na Figura 18.

Figura 18 - Fluxo do desenvolvimento deste trabalho. Elaborado pelo autor.

 Para fins de uso, esse projeto foi realizado em uma máquina com a seguinte

configuração:

• Sistema operacional: Windows 10 Pro 64 bits (10.0, Compilação 18362).

• Processador: Intel® Core™ i7-6700HQ, 2.6 GHz (8 CPUs).

• Memória RAM: 8192 MB.

• GPU: NVIDIA GeForce GTX 960M, 6071MB.

• 120 GB de disco SSD.

3.3. Descrição das Atividades Realizadas

Esta seção tem por objetivo descrever em detalhes as etapas da metodologia descrita

na seção anterior.

27

3.3.1. Escolha da linguagem de programação

A linguagem Python foi, essencialmente, escolhida para o desenvolvimento deste

trabalho por conta da grande variedade de bibliotecas, já existentes, para atividades de pré-

processamento de dados, processamento de linguagem de natural e implementação de

algoritmos de ML. Além disso, a linguagem conta com uma enorme comunidade para a

solução de dúvidas e um vasto arsenal de materiais disponíveis na Internet para consulta e

uso. Outras características, não menos relevantes, para a escolha da linguagem são: i)

linguagem de fácil entendimento (mesmo para os que nunca tiveram contato); ii) integração

com diversos sistemas operacionais (este trabalho foi desenvolvido em sistema Windows

10); iii) linguagem de alto nível, onde códigos complexos, densos e de difícil compreensão

são dispensados, reduzindo tempo de compilação (Peters, T, 2004).

3.3.2. Balanceamento da base de dados

Este trabalho foi desenvolvido em cima de uma base, de comentários textuais

qualitativos, proprietária, ou seja, o seu autor já dispunha dos dados com as classificações

pertinentes ao desenvolvimento do projeto. Essa base era um arquivo em formato .xlsx

(Excel) extraído das Surveys multistakeholders respondidas por um grupo de empresas

participantes da 1ª edição da pesquisa Empresa Humanizadas do Brasil. O arquivo possuía

6102 comentários, dentre os quais foram escolhidos (a partir da simples aplicação de um

filtro no próprio programa Excel), apenas, os que possuíam rótulos ou classificações

(positivo ou negativo). Dessa forma, chegou-se à base de dados, de fato, utilizada neste

projeto, um arquivo .xlsx com 622 comentários já rotulados.

Porém, para o desenvolvimento da aplicação os dados precisavam estar balanceados,

para não enviesar os algoritmos de análise e classificação. Logo, dos 622 comentários

rotulados, 489 eram positivos e, apenas, 133 negativos. Portanto, foi realizado um corte

consciente - garantindo que continuassem a existir comentários de todas as empresas do

grupo analisado - de comentários classificados positivamente. Por fim, a base de dados foi

reduzida a, apenas, 266 comentários rotulados e balanceados entre positivos e negativos.

28

3.3.3. Pré-processamento dos dados

Tendo em mãos uma base de dados rotulada e balanceada era necessário fazer o pré-

processamento desses dados para os próximos passos do desenvolvimento da aplicação. Para

isso, primeiramente utilizou-se a biblioteca pandas da linguagem Python que são estruturas

de dados poderosas para análise de dados. Através da função pandas.read_excel() foi

possível ler o arquivo no formato .xlsx (Excel) e transferir os dados para serem trabalhados

dentro da aplicação. Ademais nesta aplicação foram utilizados mais recursos disponíveis na

biblioteca como: i) apply, permite a manipulação dos dados, como deixar todas as letras em

minúsculo, limpar strings; ii) get.dummies, transforma os caracteres dos classificadores,

positivo e negativo, em 0 e 1.

Em seguida, para tratar os comentários, efetuando a limpeza de caracteres especiais,

pontuações e coisas inúteis, utilizou-se a biblioteca re que permite manipular expressões

regulares e pode ser visto no Apêndice A.

Por fim, utilizou-se a biblioteca NLTK que tem como objetivo dispor ferramentas

para o NLP. Através de suas funções foi possível eliminar as stopwords e realizar o stemming

nos códigos desenvolvidos.

3.3.4. Extração de features dos dados

Nesta aplicação de NLP, as features do modelo foram basicamente as palavras

(também chamadas de tokens). Para o teste do algoritmo Naive Bayes, foram utilizados

unigramas e bigramas que compõem os comentários textuais, através do método discutido

na seção anterior, TF-IDF. Para o teste dos algoritmos LSTM e LSTM bidirecional, foram

utilizados apenas os tokens por se tratar de um algoritmo com uma maior complexidade.

29

3.3.5. Aplicação dos algoritmos de análise e classificação de

opiniões

No passo que segue a extração de features a partir das instâncias dos dados da base,

deve-se realizar a aplicação dos algoritmos selecionados com a finalidade de comparação e

seleção do modelo com os melhores resultados.

Os algoritmos foram implementados usando a biblioteca sklearn, que consiste de um

módulo para ML e mineração de dados da linguagem Python. Além disso, os algoritmos

LSTM e LSTM bidirecional utilizaram a interface de programação de aplicações (API, do

inglês, Application Programming Interface) de alto nível para redes neurais, a Keras.

3.3.5.1. Algoritmo Naive Bayes

A implementação do algoritmo se deu, como mencionado, através da biblioteca

sklearn, mais especificamente através da classe MultinomialNB(), um classificador Naive

Bayes multinominal, adequado para classificar recursos discretos como contagem de

palavras para classificação de textos. Porém, a função se adequa muito bem a contagens

fracionárias quando utiliza métricas como TF-IDF, que foi o caso deste trabalho. Além disso,

o algoritmo foi testado em duas configurações, uma utilizando unigramas e outra utilizando

bigramas.

Segundo Buduma (2015), havia um consenso de se distribuir os dados de treinamento

e teste na proporção de 80% e 20%, respectivamente, que fora utilizada neste trabalho. E,

como discutido anteriormente, o algoritmo foi utilizado em duas configurações, uma usando

unigramas e outra usando bigramas, os resultados da matriz de confusão podem ser

observados na Tabela 1 e 2, respectivamente. Os valores da acurácia e do tempo de

treinamento do modelo dos algoritmos podem ser vistos na tabela 3.

30

 Positivo Negativo

Positivo 51 3

Negativo 4 50

Tabela 1 - Matriz de confusão do algoritmo Naive Bayes utilizando unigramas. Elaborado pelo autor.

 Positivo Negativo

Positivo 50 4

Negativo 3 51

Tabela 2 - Matriz de confusão do algoritmo Naive Bayes utilizando bigramas. Elaborado pelo autor.

 Acurácia Tempo de treinamento

Naive Bayes com unigramas 94% 3s

Naive Bayes com bigramas 94% 5s

Tabela 3 - Acurácia e tempo de treinamento dos algoritmos. Elaborado pelo autor.

3.3.5.2. Algoritmo redes neurais recorrentes LSTM e LSTM bidirecional

Além de utilizar a biblioteca sklearn, o algoritmo também fez o uso da API Keras

que já implementa o LSTM e o LSTM bidirecional, através das funções LSTM() e

Bidirectional(), respectivamente. Para este último, passou-se como parâmetro da função a

própria função LSTM().

Para desenvolver o modelo a ser usado como classificador de opiniões, utilizou-se a

mesma proporção da aplicação do algoritmo Naive Bayes, uma porcentagem de 20% dos

31

dados para teste e de 80% para treino do modelo. As etapas úteis a execução desta aplicação:

i) carregar os dados pré-processados na memória; ii) quando utilizado, carregar o modelo de

word embedding (GloVe50 ou GloVe600); iii) realizar o treinamento dos dados; iv) executar

a avaliação das classificações no conjunto de testes.

Para as arquiteturas, a etapa de treinamento foi executada em 6 iterações de uma

época, logo o treinamento total consiste de 6 épocas, por questões de tempo de

processamento e validação através de testes com até 15 épocas de que esse valor (6 épocas)

retornava o melhor resultado. Assim, após o treinamento de uma época é feita a classificação

dos dados do conjunto de teste e em seguida a avaliação das classificações feitas. Dessa

forma, é possível avaliar a evolução do modelo de acordo com o avanço dos treinamentos.

Após o fim do treinamento das 6 épocas, cada modelo é salvo para que possa ser reutilizado

futuramente.

Após essa etapa, faz-se uma análise de desempenho para permitir avaliar qual

arquitetura consegue melhores resultados para o problema de classificação de opiniões em

comentários textuais. Para avaliar quão bons foram os resultados obtidos pelas arquiteturas,

foram avaliadas as métricas já discutidas acima.

Das métricas avaliadas, para redes neurais, o loss é a métrica de maior relevância,

uma vez que durante o treinamento, a rede busca sempre o diminuir. Assim, a rede que

alcançar o menor valor de loss, será considerada a rede com o melhor desempenho. Na

aplicação deste trabalho calculamos o loss a partir da função de custo já implementada nas

bibliotecas em uso binary_crossentropy, uma vez em que estamos medindo apenas 2

parâmetros de classificação, representados vetorialmente como 0 e 1.

Porém, o loss não tem uma faixa de valores predefinida, sendo, portanto, difícil

avaliar o quão bons são os resultados apenas com ele. Para auxiliar nessa análise, utiliza-se

a acurácia, para obtenção de uma visão mais ampla do desempenho.

Os resultados das diferentes arquiteturas e configurações citadas na seção 3.2, podem

ser observados nas Tabelas 4 e 5.

32

Arquitetura epc 1 epc 2 epc 3 epc 4 epc 5 epc 6

LSTM pura 0,6841 0,6491 0,6181 0,3815 0,2876 0,1986

LSTM com GloVe50 0,6561 0,6294 0,5948 0,5480 0,5056 0,4422

LSTM com GloVe600 0,4340 0,2070 0,1706 0,3258 0,2884 0,1308

LSTM bidirecional pura 0,6892 0,6735 0,5667 0,3984 0,2693 0,1183

LSTM bidirecional com GloVe50 0,5094 0,6038 0,6651 0,7264 0,7170 0,7170

LSTM bidirecional com GloVe600 0,4682 0,3505 0,4239 0,4053 0,2607 0,1997

Tabela 4 - Valores de loss por época (epc) e por arquitetura. Elaborado pelo autor.

Arquitetura epc 1 epc 2 epc 3 epc 4 epc 5 epc 6

LSTM pura 68,52 75,93 68,52 93,33 87,04 91,44

LSTM com GloVe50 66,67 70,39 70,37 75,93 79,63 79,63

LSTM com GloVe600 85,19 87,04 92,59 87,04 90,74 92,59

LSTM bidirecional pura 62,96 53,70 75,93 92,59 90,74 94,44

LSTM bidirecional com GloVe50 57,41 61,11 72,22 74,07 75,93 83,33

LSTM bidirecional com GloVe600 81,48 85,19 88,89 88,89 90,74 92,59

Tabela 5 - Valores de acurácia em porcentagem por época e por arquitetura. Elaborado pelo autor.

Os tempos de execução dos treinamentos dos dados dos algoritmos podem ser

vistos na Tabela 6.

33

Arquitetura Tempo de execução do treinamento

LSTM pura 15 s

LSTM com GloVe50 40 s

LSTM com GloVe600 123 s

LSTM bidirecional pura 491 s

LSTM bidirecional com GloVe50 26 s

LSTM bidirecional com GloVe600 856 s

Tabela 6 - Tempos de execução dos treinamentos dos dados dos algoritmos utilizados. Elaborado pelo autor.

3.4. Resultados Obtidos

Utilizando o algoritmo Naive Bayes os resultados obtidos, nos casos de teste e

treinamento, foram acima do esperado e com um tempo de execução baixa. Esse algoritmo

é reconhecido, inclusive, por este fato, que o leva a ser adequado para aplicações de tempo

real. Atentou-se, também, o fato de que o resultado não se alterou em termos de acurácia de

acordo com a escolha da configuração n-gramas.

Na aplicação dos algoritmos de redes neurais recorrentes testadas, percebe-se que a

melhor configuração, ou seja, aquela que possui o menor valor de loss e a maior acurácia, é

a LSTM bidirecional pura. Percebe-se, também, o fato de que com o uso dos word

embeddings as redes que retornaram os melhores resultados foram as que utilizaram a

dimensão 600, ou seja, as que possuíam um maior número de vetor de palavras.

Para fins de novos testes dos modelos implementados, treinados e testados com a

mesma base de dados, montou-se uma nova base contendo novos comentários de outras

empresas participantes da pesquisa, os quais também já haviam sido classificados, porém

não pertenceram à base inicial deste trabalho. A nova base continha 52 comentários, dos

34

quais 33 eram positivos e 19 eram negativos, ou seja, não haviam balanceamento dos dados

porque não era preciso, uma vez que essa base foi utilizada apenas para validação dos

modelos gerados.

Dessa forma, os comentários textuais de opiniões da nova base foram dados como

entrada para os modelos gerados e sua saída coletada em um arquivo em formato .xlsx

(Excel) para fins de comparação com a classificação previamente realizada. Os resultados

dos modelos em relação à classificação desses dados podem ser observados na Tabela 7.

Modelo aplicado Acertos

Naive Bayes com unigramas 67

Naive Bayes com bigramas 75

LSTM pura 88

LSTM com GloVe50 73

LSTM com GloVe600 87

LSTM bidirecional pura 92

LSTM bidirecional com GloVe50 81

LSTM bidirecional com GloVe600 87

Tabela 7 - Acertos em porcentagem na nova base de dados de acordo com o modelo gerado. Elaborado pelo

autor.

 Nota-se que os resultados does testes através da nova base seguem razoavelmente os

resultados discutidos anteriormente. As porcentagens de acerto das redes neurais recorrentes

seguiram aproximadamente os valores de acurácia dos dados que foram testados da base

inicial no modelo treinado. Entretanto, as porcentagens de acerto para o algoritmo Naive

Bayes não seguiram os valores de acurácia vistos na aplicação com a base inicial, o que pode

35

ser explicado por conta da baixa quantidade de dados rotulados nos treinos e testes para gerar

o modelo. Nas dissertações e artigos lidos na internet as bases que geram os modelos de

classificação, geralmente, possuem milhares ou milhões de dados classificados, mas neste

trabalho utilizou-se uma base de, apenas, algumas centenas de dados.

 É interessante notar que, assim como esperado as redes neurais recorrentes tiveram

um desempenho superior ao algoritmo de Naive Bayes, entretanto esperava-se que as

LSTMs que utilizaram os word embeddings tivessem uma taxa de acerto maior, o que não

foi constatado nos resultados de testes com a nova base de dados.

3.5. Dificuldades e Limitações

A maior dificuldade encontrada para o desenvolvimento deste trabalho foi a baixa

quantidade de dados rotulados para treinamento e teste dos modelos gerados por algoritmos

de ML. Como discutido anteriormente, normalmente utilizam-se bases de milhares ou

milhões de dados para treinamento dos modelos. Dessa forma, possivelmente essa seja

também a maior limitação das análises e comparações entre os diferentes métodos utilizados.

O autor não chegou a explorar a utilização de outros métodos para classificação de

opiniões, como os classificadores KNN e suas variantes, o SVM, as árvores de decisão,

dentre outros tantos que existem na literatura. Foi feita a opção de analisar e testar métodos

muito distantes em relação a complexidade de implementação, tempo de execução e ao

contexto de aplicação, por conta do tempo do autor disponível para pesquisa e

implementação destes métodos.

Dessa forma, a principal lição que o autor deste trabalho levará de sua execução é

que a pesquisa científica deve explorar todos os possíveis caminhos que levam a solução

desejada. Além disso, a ciência enquanto arte precisa de tempo disponível para ser apreciada,

analisada, incorporada e, só então, colocada em prática.

36

3.6. Considerações Finais

Neste capítulo foi apresentado todo o desenvolvimento do trabalho, os pensamentos

que levaram a cada processo e os resultados obtidos. Foram analisados os desempenhos de

dois métodos de ML para classificação de opiniões, além da comparação de seus modelos

gerados por meio de diferentes configurações. Suas dificuldades e limitações foram expostas

e consideradas para o contexto deste trabalho, destacando-se a importância de uma

quantidade, relativamente, alta de dados para gerar modelos de classificação mais assertivos.

No próximo capítulo será feita a conclusão do trabalho, e algumas considerações de

importância para o curso de graduação do autor.

37

CAPÍTULO 4: CONCLUSÃO

4.1. Contribuições

Este trabalho teve como objetivo utilizar o ML supervisionado para a construção de

modelos de análise e classificação de opiniões, em comentários textuais qualitativos. Para

isto, utiliza-se de uma base proprietária de dados (para treinamento e teste) e dos algoritmos

de ML Naive Bayes, com uso das técnicas N-gramas, e redes neurais recorrentes LSTM e

LSTM bidirecional, tendo como finalidade a comparação e seleção do modelo com melhores

resultados, para uso real nas próximas edições da pesquisa Empresas Humanizadas do Brasil.

Assim sendo, elenca-se as seguintes contribuições científicas e práticas deste projeto:

1. Comparação entre diferentes e distantes métodos de classificação de textos

utilizando-se ML.

2. Validar o uso de redes neurais recorrentes para classificação de opiniões

textuais num cenário de aplicação real.

3. Implementação de algoritmos de ML no escopo das próximas edições da

pesquisa Empresas Humanizadas do Brasil

4.2. Relacionamento entre o Curso e o Projeto

O autor deste trabalho não teve a oportunidade de cursar, durante a graduação,

nenhuma disciplina sobre ML e, também, não teve contato com a linguagem de programação

Python através do curso. Algo similar, mas ainda muito distante, foi a disciplina de

Inteligência Artificial, que porventura teve uma abordagem muito prática. Dessa forma, o

autor considera as disciplinas de Introdução a Ciência da Computação como cruciais para o

desenvolvimento deste presente trabalho, pois a partir do conhecimento da lógica de

programação e da linguagem C, o aprendizado de Python e o entendimento dos algoritmos

de ML foram muito fluidos.

O autor deste trabalho teve a oportunidade de atuar, em 2018, na 1ª edição da

pesquisa Empresas Humanizadas do Brasil, com o objetivo ajudar a elevar a humanidade

por meio da inspiração de negócios mais conscientes, humanizados, sustentáveis e

inovadores. Durante esse período, o autor desenvolveu uma ferramenta de organização e pré-

38

processamento dos dados qualitativos textuais, das Surveys da pesquisa, o que foi um fator

essencial para desenvolver este trabalho.

4.3. Considerações sobre o Curso de Graduação

O curso de Engenharia de Computação da USP de São Carlos, quando comparado a

cursos da mesma área da mesma instituição, como o curso de Engenharia Elétrica e o de

Ciência da Computação, possui uma carga horária de aulas semestral absurdamente grande,

o que faz com que trabalhos fora de sala de aula não sejam tão priorizados quanto deveriam.

É notável que para o aprendizado de conceitos complexos de computação, assim como

desenvolvimento de habilidades técnicas de criação de códigos eficientes requer prática.

Nesse sentido, a carga horária de aulas extremamente carregada prejudica o trabalho prático

dos estudantes, assim como é deixado de lado cada vez mais as atividades extra-curriculares,

importantes para o desenvolvimento pessoal e profissional dos estudantes.

Sendo o curso altamente relacionado às tecnologias emergentes da época, é preciso

que o mesmo se adapte rapidamente a elas, de forma a não ficar atrasado tecnologicamente

em relação ao mundo como um todo.

4.4. Trabalhos Futuros

Este projeto foi realizado tendo em mente que, caso bem-sucedido, como foi o caso,

seria o princípio de uma incorporação de ML nas próximas edições da pesquisa Empresas

Humanizadas do Brasil.

Assim, como trabalho futuro, propõe-se a implementação da técnica que se mostrou

mais apropriada para reconhecimento de opiniões da pesquisa supracitada nas Surveys

multistakeholders, visando reduzir o tempo gasto da equipe para leitura e classificação

dessas opiniões. Além disso, através da construção de uma base de dados muito maior, para

39

treinamento a partir do algoritmo de ML, a incorporação online e em on demand deste

trabalho, para que as empresas possam ter seus relatórios gerados automaticamente.

40

REFERÊNCIAS

ALVES, F. A. L.; BAPTISTA, C. D. S.; FIRMINO, A. A.; OLIVEIRA, M. G. D.;

PAIVA, A. C. D. A. Comparison of svm versus naïve-bayes techniques for sentiment

analysis in tweets: a case study with the 2013 FIFA confederations cup. In: Brazilian

Symposium On Multimedia And The Web, João Pessoa, 2014.

ARANHA, C. N. Uma abordagem de pré-processamento automático para

mineração de textos em português: sob o enfoque da inteligência computacional.

Pontifica Universidade Católica do Rio de Janeiro, 2007. Disponível em:

<http://eds.a.ebscohost.com/eds/detail/detail?vid=1&sid=1963d31b-9887-4b50-

ad3f5d3bc06dc934%40sessionmgr4008&bdata=Jmxhbmc9cHQtYnImc2l0ZT1lZHMtbGl2

ZSZzY29wZT1zaXRl#AN=edsndl.oai.union.ndltd.org.IBICT.oai.agregador.ibict.br.BDTD

.oai.bdtd.ibict.br.PUC.RIO.o>. Acesso em: 23 out. 2019, 23:37:52.

BARROSO, Y. M. Structured learning with incremental feature induction and

selection for portuguese dependency parsing. Dissertação (mestrado), Departamento de

Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2016.

BISPO T. D. Arquitetura LSTM para classificação de discursos de ódio cross-

lingual Inglês-PtBR. Tese (mestrado) - Universidade Federal De Sergipe, 2018.

BROWNLEE, J. Machine Learning Mastery with Python: Understand Your

Data, Create Accurate Models and Work Projects End-to-end. [s.n.], 2016.

BUDUMA, N. Fundamentals of Deep Learning, 2017.

CHAKRABORTY, G.; KRISHNA, M. Analysis of unstructured data:

applications of text analytics and sentiment mining. In: SAS GLOBAL FORUM, 2014,

Washington. Proceedings... Cary: SAS Institute Inc, 2014. p. 1288-1302.

CRESTANA, C. E. M. A token classification approach to dependency parsing.

Dissertação (mestrado), Departamento de Informática, Pontifícia Universidade Católica do

Rio de Janeiro, Rio de Janeiro, 2010.

http://eds.a.ebscohost.com/eds/detail/detail?vid=1&sid=1963d31b-9887-4b50-ad3f5d3bc06dc934%40sessionmgr4008&bdata=Jmxhbmc9cHQtYnImc2l0ZT1lZHMtbGl2ZSZzY29wZT1zaXRl%23AN=edsndl.oai.union.ndltd.org.IBICT.oai.agregador.ibict.br.BDTD.oai.bdtd.ibict.br.PUC.RIO.o
http://eds.a.ebscohost.com/eds/detail/detail?vid=1&sid=1963d31b-9887-4b50-ad3f5d3bc06dc934%40sessionmgr4008&bdata=Jmxhbmc9cHQtYnImc2l0ZT1lZHMtbGl2ZSZzY29wZT1zaXRl%23AN=edsndl.oai.union.ndltd.org.IBICT.oai.agregador.ibict.br.BDTD.oai.bdtd.ibict.br.PUC.RIO.o
http://eds.a.ebscohost.com/eds/detail/detail?vid=1&sid=1963d31b-9887-4b50-ad3f5d3bc06dc934%40sessionmgr4008&bdata=Jmxhbmc9cHQtYnImc2l0ZT1lZHMtbGl2ZSZzY29wZT1zaXRl%23AN=edsndl.oai.union.ndltd.org.IBICT.oai.agregador.ibict.br.BDTD.oai.bdtd.ibict.br.PUC.RIO.o
http://eds.a.ebscohost.com/eds/detail/detail?vid=1&sid=1963d31b-9887-4b50-ad3f5d3bc06dc934%40sessionmgr4008&bdata=Jmxhbmc9cHQtYnImc2l0ZT1lZHMtbGl2ZSZzY29wZT1zaXRl%23AN=edsndl.oai.union.ndltd.org.IBICT.oai.agregador.ibict.br.BDTD.oai.bdtd.ibict.br.PUC.RIO.o

41

FIGUEIREDO, N. M. A. Método e Metodologia na Pesquisa Científica. (Org.) s.l.,

Difusão Editora, 2004. p. 247.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT

Press, 2016.

HAN, J.; PEI, J.; KAMBER, M. Data mining: concepts and techniques. [S.l.]:

Elsevier, 2011.

HARTMANN, N. et al. Portuguese word embeddings: Evaluating on word

analogies and natural language tasks. arXiv preprint arXiv:1708.06025, 2017.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural

Computation, MIT Press, v. 9, n. 8, 1997. p. 1735-1780.

INOKI, S. R. Uma Gramática de um Fragmento do Português Baseado na

Lógica Ilocutória. Dissertação (Mestrado) – Curso de Sistemas e Computação, Instituto

Militar de Engenharia, Rio de Janeiro, 1992.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspectives, and

prospects. Science 349, 255, 2015.

LANDEGHEM, J. V. A survey of word embedding literature. 2016.

LIU, B. Sentiment analysis and opinion mining. Synthesis Lectures On Human

Language Technologies, v. 5, n. 1, 2012. p. 1-167.

MIKOLOV, T. et al. Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781, 2013.

OLAH, Christopher. Understanding LSTM Networks. Disponível em:

<http://colah.github.io/posts/2015-08-Understanding-LSTMs/>. Acesso em: 23 out. 2019,

22:42:30.

PADILHA, V. A.; CARVALHO, A. C. P. L. F. Mineração de Dados em Python,

2017.

42

PENNINGTON, J.; SOCHER, R.; MANNING, C. Glove: Global vectors for word

representation. In: Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP). [S.l.: s.n.], 2014. Disponível em:

<https://nlp.stanford.edu/pubs/glove.pdf> Acesso em: 22 out. 2019, 19:28:23.

PETERS, T. Zen of Python, 2004. Disponível em:

<https://www.python.org/dev/peps/pep-0020/>. Acesso em 24 out. 2019.

SCHUSTER, M.; PALIWAL, K. K. Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing, IEEE, v. 45, n. 11, p. 2673–2681, 1997.

VON LUXBURG, U.; SCHÖLKOPF, B. Statistical learning theory: models,

concepts, and results, 2008.

WILSON, T.; WIEBE, J.; HOFFMANN, P. Recognizing contextual polarity: an

exploration of features for phrase-level sentiment analysis. Computational linguistics, v.

35, n. 3, 2009. p. 399-433.

ZHANG, Y.; JIN, R.; ZHOU, Z. Understanding bag-ofwords model: a statistical

framework. International journal of machine learning and cybernetics. V.1, n. 1, 2010.

p. 43-52.

https://nlp.stanford.edu/pubs/glove.pdf
https://www.python.org/dev/peps/pep-0020/

43

APÊNDICE A – Código Fonte 1

def clean_str(string):

 string = re.sub(r"[^A-Za-z0-9(),!?'`$%@#.&+/\|-]", " ", string)

 string = re.sub(r",", " , ", string)

 string = re.sub(r"!", " ! ", string)

 string = re.sub(r"\(", " \(", string)

 string = re.sub(r"\)", " \) ", string)

 string = re.sub(r"\?", " \? ", string)

 string = re.sub(r"\s{2,}", " ", string)

 cleanr = re.compile('<.*?>')

 string = re.sub(r'\d+', '', string)

 string = re.sub(cleanr, '', string)

 string = re.sub("'", '', string)

 string = re.sub(r'\W+', ' ', string)

 string = string.replace('_', '')

 return string.strip()

